Numerical simulations for hydrodynamic technique protecting optical components in ITER divertor

被引:2
作者
Bukreev, I. M. [1 ]
Mukhin, E. E. [1 ]
Bulovich, S. V. [2 ]
Matyushenko, A. A. [2 ]
Babinov, N. A. [1 ]
Dmitriev, A. M. [1 ]
Litvinov, A. E. [1 ]
Razdobarin, A. G. [1 ]
Samsonov, D. S. [1 ]
Varshavchick, L. A. [1 ]
Zatilkin, P. A. [1 ]
机构
[1] Ioffe Phys Tech Inst, 26 Politekhnicheskaya, St Petersburg 194021, Russia
[2] Peter Great St Petersburg Polytech Univ, 29 Politekhnicheskaya, St Petersburg 195251, Russia
来源
INTERNATIONAL CONFERENCE PHYSICA.SPB/2019 | 2019年 / 1400卷
关键词
JET;
D O I
10.1088/1742-6596/1400/7/077040
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
There are several protecting techniques managing with contamination on optical surfaces of in-vessel diagnostic components in ITER. Analysis of impurity transport in narrow and curved gaps gave us the idea that it can't be explained by convection flows. The proposed protecting construction, situated between plasma and irradiating laser mirror launcher, was analysed for effectiveness. The protecting ability of this construction is based on the principles of hydrodynamic, in particular on bevelled entrance, which provides redirection of polluting gas flow away from the optical components due to angling optical and geometrical channel axes. Several different numerical simulations were studied. The design, setting objectives as well as equations and parameters are under discussion. Results of 2D and 3D numerical simulations are provided.
引用
收藏
页数:8
相关论文
共 16 条
[1]  
ANSYS Inc, 2013, ANSYS FLU THER GUID
[2]   A series of measures for protecting optics against evaporation in diagnostic channels of tokamaks [J].
Bukreev, I. M. ;
Mukhin, E. E. ;
Bulovich, S. V. ;
Razdobarin, A. G. ;
Semenov, V. V. ;
Tolstyakov, S. Yu. ;
Kochergin, M. M. ;
Kurskiev, G. S. ;
Masyukevich, S. V. ;
Chernakov, P. V. .
INSTRUMENTS AND EXPERIMENTAL TECHNIQUES, 2014, 57 (02) :155-164
[3]   ELM divertor peak energy fluence scaling to ITER with data from JET, MAST and ASDEX upgrade [J].
Eich, T. ;
Sieglin, B. ;
Thornton, A. J. ;
Faitsch, M. ;
Kirk, A. ;
Herrmann, A. ;
Suttrop, W. ;
Abhangi, M. ;
Abreu, P. ;
Aftanas, M. ;
Afzal, M. ;
Aggarwal, K. M. ;
Aho-Mantila, L. ;
Ahonen, E. ;
Aints, M. ;
Airila, M. ;
Albanese, R. ;
Alegre, D. ;
Alessi, E. ;
Aleynikov, P. ;
Alfier, A. ;
Alkseev, A. ;
Allan, P. ;
Almaviva, S. ;
Alonso, A. ;
Alper, B. ;
Alsworth, I. ;
Alves, D. ;
Ambrosino, G. ;
Ambrosino, R. ;
Amosov, V. ;
Andersson, F. ;
Andersson Sunden, E. ;
Angelone, M. ;
Anghel, A. ;
Anghel, M. ;
Angioni, C. ;
Appel, L. ;
Apruzzese, G. ;
Arena, P. ;
Ariola, M. ;
Arnichand, H. ;
Arnoux, G. ;
Arshad, S. ;
Ash, A. ;
Asp, E. ;
Asunta, O. ;
Atanasiu, C. V. ;
Austin, Y. ;
Avotina, L. .
NUCLEAR MATERIALS AND ENERGY, 2017, 12 :84-90
[4]   In vessel pressure measurement in nuclear fusion experiments with ASDEX gauges [J].
Haas, G ;
Bosch, HS .
VACUUM, 1998, 51 (01) :39-46
[5]   Stationary and transient divertor heat flux profiles and extrapolation to ITER [J].
Herrmann, A ;
Eich, T ;
Jachmich, S ;
Laux, M ;
Andrew, P ;
Bergmann, A ;
Loarte, A ;
Matthews, G ;
Neuhauser, J .
JOURNAL OF NUCLEAR MATERIALS, 2003, 313 :759-767
[6]  
Hirschfelder J O, 1961, GASES LIQUIDS MOL TH, P892
[8]  
Landau L D, 1979, PHYS KINETICS, V10, P67
[9]   Main chamber high recycling on ASDEX upgrade [J].
McCormick, K. ;
Dux, R. ;
Fischer, R. ;
Scarabosio, A. .
JOURNAL OF NUCLEAR MATERIALS, 2009, 390-91 :465-469
[10]   Physical aspects of divertor Thomson scattering implementation on ITER [J].
Mukhin, E. E. ;
Pitts, R. A. ;
Andrew, P. ;
Bukreev, I. M. ;
Chernakov, P. V. ;
Giudicotti, L. ;
Huijsmans, G. ;
Kochergin, M. M. ;
Koval, A. N. ;
Kukushkin, A. S. ;
Kurskiev, G. S. ;
Litvinov, A. E. ;
Masyukevich, S. V. ;
Pasqualotto, R. ;
Razdobarin, A. G. ;
Semenov, V. V. ;
Tolstyakov, S. Yu. ;
Walsh, M. J. .
NUCLEAR FUSION, 2014, 54 (04)