Pumping effects in models of periodically forced flow configurations

被引:32
作者
Propst, Georg [1 ]
机构
[1] Graz Univ, Inst Math & Wissensch Rechnen, A-8010 Graz, Austria
关键词
valveless pumping; periodic forcing; asymmetric pressure losses;
D O I
10.1016/j.physd.2006.04.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A periodically forced system of differential equations is defined to be a pump, if there exists an asymptotically periodic solution with non-equilibrium mean. It is proved that such systems exist. The definition is based on physical and numerical observations of pumping in (models of) asymmetric flow configurations. For models with rigid pipes and tanks, physical explanations for the pumping effects are derived. One of the pumps is an internally forced linear system. For externally forced nonlinear rigid pipe models, necessary and sufficient conditions for pumping are given. It is then demonstrated in a general setting that no externally forced linear pump exists. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:193 / 201
页数:9
相关论文
共 20 条
[1]  
ANDERSSON H, MICROTAS 2000 S ENSC
[2]  
[Anonymous], NONLINEAR ANAL DIFFE
[3]  
Auerbach D., 2004, Cardiovasc. Eng, V4, P201, DOI [DOI 10.1023/B:CARE.0000031549.13354.5E, 10.1023/B:CARE.0000031549.13354.5e]
[4]   Numerical investigation of the Liebau phenomenon [J].
Borzì, A ;
Propst, G .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2003, 54 (06) :1050-1072
[5]  
Hale JK., 1969, ORDINARY DIFFERENTIA
[6]  
ITO K, 2002, EVOLUTOIN EQUATIONS
[7]   Two-dimensional simulations of valveless pumping using the immersed boundary method [J].
Jung, EN ;
Peskin, CS .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2001, 23 (01) :19-45
[8]   UBER EIN VENTILLOSES PUMPPRINZIP [J].
LIEBAU, G .
NATURWISSENSCHAFTEN, 1954, 41 (14) :327-327
[9]   NONUNIFORM NON-RESONANCE CONDITIONS AT THE 2 1ST EIGENVALUES FOR PERIODIC-SOLUTIONS OF FORCED LIENARD AND DUFFING EQUATIONS [J].
MAWHIN, J ;
WARD, JR .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1982, 12 (04) :643-654
[10]  
Morse PhilipM., 1987, Theoretical Acoustics