Thermal conductivity of bulk and nanowire of cubic-SiC from ab initio calculations

被引:24
作者
Malakkal, Linu [1 ]
Szpunar, Barbara [2 ]
Siripurapu, Ravi Kiran [1 ]
Szpunar, Jerzy A. [1 ]
机构
[1] Univ Saskatchewan, Dept Mech Engn, Saskatoon, SK S7N 0W0, Canada
[2] Univ Saskatchewan, Dept Phys & Engn Phys, Saskatoon, SK S7N 0W0, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
SiC; First principles; Nanowires; Thermal conductivity; BTE; Slack model; LATTICE-DYNAMICS; SILICON-CARBIDE; PHASE-TRANSITION; EQUATION;
D O I
10.1016/j.commatsci.2016.11.040
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this work, we predict the structural, elastic, thermal and thermodynamic properties of alpha-silicon carbide (SiC) using the plane-wave pseudopotential approach to density functional theory (DFT) in the local density approximation (LDA). The lattice thermal conductivity of SiC is calculated using the Slack model and Boltzmann transport equation (BTE). We also provide the thermal conductivity of SiC nanowires and the dependence of the thermal conductivity on the diameter and their orientations. The ground state structural and elastic properties show excellent agreement with the experiments. The calculated phonon dispersion curve shows good agreement with the experimental values measured at room temperature. The thermodynamic properties are studied using quasi-harmonic approximation (QHA), and the predicted properties agree well with the experiment. This study demonstrates the need for including the normal phonon scattering and boundary scattering to evaluate the thermal conductivities at low temperature and is evident from the fact that the thermal conductivity at low temperature predicted by the Slack model is higher compared to the value predicted by the BTE. Our BTE calculation for the bulk SiC agrees well with the known experimental results, and we also provide predictions for the case of SiC in the form of nanowires. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:249 / 256
页数:8
相关论文
共 46 条
[1]   CALCULATED ELASTIC-CONSTANTS AND STRUCTURAL-PROPERTIES OF MO AND MOSI2 [J].
ALOUANI, M ;
ALBERS, RC ;
METHFESSEL, M .
PHYSICAL REVIEW B, 1991, 43 (08) :6500-6509
[2]  
Barin I., 1995, THERMOCHEMICAL DATA, V1, DOI DOI 10.1002/9783527619825
[3]   GIBBS:: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model [J].
Blanco, MA ;
Francisco, E ;
Luaña, V .
COMPUTER PHYSICS COMMUNICATIONS, 2004, 158 (01) :57-72
[4]   MODEL FOR LATTICE THERMAL CONDUCTIVITY AT LOW TEMPERATURES [J].
CALLAWAY, J .
PHYSICAL REVIEW, 1959, 113 (04) :1046-1051
[5]   Low thermal conductivity and triaxial phononic anisotropy of SnSe [J].
Carrete, Jesus ;
Mingo, Natalio ;
Curtarolo, Stefano .
APPLIED PHYSICS LETTERS, 2014, 105 (10)
[6]   Materials selection guidelines for low thermal conductivity thermal barrier coatings [J].
Clarke, DR .
SURFACE & COATINGS TECHNOLOGY, 2003, 163 :67-74
[7]   Fabrication of SiC-SiC composites for fuel cladding in advanced reactor designs [J].
Deck, C. P. ;
Khalifa, H. E. ;
Sammuli, B. ;
Hilsabeck, T. ;
Back, C. A. .
PROGRESS IN NUCLEAR ENERGY, 2012, 57 :38-45
[8]   QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials [J].
Giannozzi, Paolo ;
Baroni, Stefano ;
Bonini, Nicola ;
Calandra, Matteo ;
Car, Roberto ;
Cavazzoni, Carlo ;
Ceresoli, Davide ;
Chiarotti, Guido L. ;
Cococcioni, Matteo ;
Dabo, Ismaila ;
Dal Corso, Andrea ;
de Gironcoli, Stefano ;
Fabris, Stefano ;
Fratesi, Guido ;
Gebauer, Ralph ;
Gerstmann, Uwe ;
Gougoussis, Christos ;
Kokalj, Anton ;
Lazzeri, Michele ;
Martin-Samos, Layla ;
Marzari, Nicola ;
Mauri, Francesco ;
Mazzarello, Riccardo ;
Paolini, Stefano ;
Pasquarello, Alfredo ;
Paulatto, Lorenzo ;
Sbraccia, Carlo ;
Scandolo, Sandro ;
Sclauzero, Gabriele ;
Seitsonen, Ari P. ;
Smogunov, Alexander ;
Umari, Paolo ;
Wentzcovitch, Renata M. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2009, 21 (39)
[10]   Cladding for high performance fuel [J].
Hallstadius, Lars ;
Johnson, Steven ;
Lahoda, Ed .
PROGRESS IN NUCLEAR ENERGY, 2012, 57 :71-76