Target Detection in Remote Sensing Images Based on Improved Cascade Algorithm

被引:10
|
作者
Wang Youwei [1 ,2 ]
Guo Ying [1 ,2 ]
Shao Xiangying [1 ,2 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Jiangsu Collaborat Innovat Ctr Atmospher Environm, Nanjing 210044, Jiangsu, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Sch Automat, Nanjing 210044, Jiangsu, Peoples R China
关键词
remote sensing; target detection; deep learning; feature fusion; cascade algorithm;
D O I
10.3788/AOS202242.2428004
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Given the large scale, uneven distribution, and large scale changes of small targets and the complex background in remote sensing images, an improved cascade algorithm SA-Cascade is proposed. This algorithm uses a recurrent feature pyramid network to strengthen the feature representation generated step by step, thereby improving the detection rate of small targets. The region proposal generation network based on the learnable anchor is utilized to locate the remote sensing target accurately. The feature adaptation module and feature fusion module are introduced to improve the performance in detecting images with complex backgrounds. On the basis of the cascade algorithm, the two-branch detection head is adopted to improve the performance of the model for detecting small targets. A comparative experiment of various algorithms is performed on TGRS-HRRSD-Dataset and VisDrone-DET dataset. The experimental results show that the improved cascade algorithm can detect and locate remote sensing image targets more accurately. Compared with the original cascade algorithm , the improved one increases the accuracy on the two datasets by 2. 94% and 9. 71% , respectively.
引用
收藏
页数:9
相关论文
共 32 条
  • [1] Cascade R-CNN: Delving into High Quality Object Detection
    Cai, Zhaowei
    Vasconcelos, Nuno
    [J]. 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 6154 - 6162
  • [2] Object Detection in Remote Sensing Images Based on a Scene-Contextual Feature Pyramid Network
    Chen, Chaoyue
    Gong, Weiguo
    Chen, Yongliang
    Li, Weihong
    [J]. REMOTE SENSING, 2019, 11 (03)
  • [3] Chen K, 2019, Arxiv, DOI arXiv:1906.07155
  • [4] DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs
    Chen, Liang-Chieh
    Papandreou, George
    Kokkinos, Iasonas
    Murphy, Kevin
    Yuille, Alan L.
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) : 834 - 848
  • [5] Cross-Scale Feature Fusion for Object Detection in Optical Remote Sensing Images
    Cheng, Gong
    Si, Yongjie
    Hong, Hailong
    Yao, Xiwen
    Guo, Lei
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2021, 18 (03) : 431 - 435
  • [6] Learning Rotation-Invariant Convolutional Neural Networks for Object Detection in VHR Optical Remote Sensing Images
    Cheng, Gong
    Zhou, Peicheng
    Han, Junwei
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (12): : 7405 - 7415
  • [7] Dense Attention Pyramid Networks for Multi-Scale Ship Detection in SAR Images
    Cui, Zongyong
    Li, Qi
    Cao, Zongjie
    Liu, Nengyuan
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (11): : 8983 - 8997
  • [8] Target Detection Method Based on Antigrowth
    Deng Shijie
    Wang Haiyan
    Xu An
    Gao Chunqing
    Li Junbing
    [J]. ACTA OPTICA SINICA, 2022, 42 (02)
  • [9] Guo CX, 2020, PROC CVPR IEEE, P12592, DOI 10.1109/CVPR42600.2020.01261
  • [10] Deep Residual Learning for Image Recognition
    He, Kaiming
    Zhang, Xiangyu
    Ren, Shaoqing
    Sun, Jian
    [J]. 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 770 - 778