Fusion of feature selection and optimized immune networks for hyperspectral image classification of urban landscapes

被引:12
|
作者
Im, Jungho [1 ]
Lu, Zhenyu [1 ]
Rhee, Jinyoung [1 ]
Jensen, John R. [2 ]
机构
[1] SUNY Coll Environm Sci & Forestry, Dept Environm Resources Engn, Syracuse, NY 13210 USA
[2] Univ S Carolina, Dept Geog, Columbia, SC 29208 USA
关键词
feature selection; information gain; optimized immune networks; urban classification; hyperspectral imagery; LiDAR; POSTING-DENSITY; LIDAR DATA;
D O I
10.1080/10106049.2011.642898
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The urban landscape is dynamic and complex. As improved remote sensing data in terms of spatial and spectral characteristics became available, more sophisticated methods have been adopted for urban applications. This study proposed and evaluated a classification model incorporating feature selection, artificial immune networks and parameter optimization. Information gain, a broadly applied feature selection metric used in data mining techniques such as decision trees, was used for feature selection. Two types of information gain binary-class entropy and multiple-class entropy - were investigated. Artificial immune networks have been recently applied to remote sensing classification and have been proven useful especially when multiple parameters of the networks are optimized through a genetic algorithm. The proposed model was tested for urban classification using hyperspectral (i.e. AISA and Hyperion) and LiDAR data over two urban study sites. Results show that the model considerably reduced processing time (similar to 70%) for classification without significant accuracy decrease.
引用
收藏
页码:373 / 393
页数:21
相关论文
共 50 条
  • [21] Hyperspectral image classification using multi-feature fusion
    Li, Fang
    Wang, Jie
    Lan, Rushi
    Liu, Zhenbing
    Luo, Xiaonan
    OPTICS AND LASER TECHNOLOGY, 2019, 110 : 176 - 183
  • [22] Boosted band ratio feature selection for hyperspectral image classification
    Fu, Zhouyu
    Caelli, Terry
    Liu, Nianjun
    Robles-Kelly, Antonio
    18TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 1, PROCEEDINGS, 2006, : 1059 - +
  • [23] A COMPREHENSIVE EVALUATION OF FEATURE SELECTION ALGORITHMS IN HYPERSPECTRAL IMAGE CLASSIFICATION
    Vijouyeh, Hamed G.
    Taskin, Gulsen
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 489 - 492
  • [24] AN IMPROVED SPECTRAL REFLECTANCE AND DERIVATIVE FEATURE FUSION FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Wang, Qingyan
    Zhang, Junping
    Chen, Jiawei
    Zhang, Ye
    2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, : 1696 - 1699
  • [25] Double-branch feature fusion transformer for hyperspectral image classification
    Lanxue Dang
    Libo Weng
    Yane Hou
    Xianyu Zuo
    Yang Liu
    Scientific Reports, 13
  • [26] Hyperspectral Image Classification Based on Multibranch Adaptive Feature Fusion Network
    Li, Chen
    Wang, Yi
    Fang, Zhice
    Li, Penglei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [27] Gaussian Pyramid Based Multiscale Feature Fusion for Hyperspectral Image Classification
    Li, Shutao
    Hao, Qiaobo
    Kang, Xudong
    Benediktsson, Jon Atli
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2018, 11 (09) : 3312 - 3324
  • [28] Cascade Superpixel Regularized Gabor Feature Fusion for Hyperspectral Image Classification
    Jia, Sen
    Lin, Zhijie
    Deng, Bin
    Zhu, Jiasong
    Li, Qingquan
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2020, 31 (05) : 1638 - 1652
  • [29] MTFFN: Multimodal Transfer Feature Fusion Network for Hyperspectral Image Classification
    Yan, Huaiping
    Zhang, Erlei
    Wang, Jun
    Leng, Chengcai
    Peng, Jinye
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [30] Double-branch feature fusion transformer for hyperspectral image classification
    Dang, Lanxue
    Weng, Libo
    Hou, Yane
    Zuo, Xianyu
    Liu, Yang
    SCIENTIFIC REPORTS, 2023, 13 (01)