Block preconditioners for mixed-dimensional discretization of flow in fractured porous media

被引:9
作者
Budisa, Ana [1 ]
Hu, Xiaozhe [2 ]
机构
[1] Univ Bergen, Dept Math, POB 7800, N-5020 Bergen, Norway
[2] Tufts Univ, Dept Math, 503 Boston Ave, Medford, MA 02155 USA
基金
美国国家科学基金会;
关键词
Porous medium; Fracture flow; Mixed finite element; Algebraic multigrid method; Iterative method; Preconditioning; APPROXIMATION; MODEL;
D O I
10.1007/s10596-020-09984-z
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we are interested in an efficient numerical method for the mixed-dimensional approach to modeling single-phase flow in fractured porous media. The model introduces fractures and their intersections as lower-dimensional structures, and the mortar variable is used for flow coupling between the matrix and fractures. We consider a stable mixed finite element discretization of the problem, which results in a parameter-dependent linear system. For this, we develop block preconditioners based on the well-posedness of the discretization choice. The preconditioned iterative method demonstrates robustness with regard to discretization and physical parameters. The analytical results are verified on several examples of fracture network configurations, and notable results in reduction of number of iterations and computational time are obtained.
引用
收藏
页码:671 / 686
页数:16
相关论文
共 50 条
  • [1] Block preconditioners for mixed-dimensional discretization of flow in fractured porous media
    Ana Budiša
    Xiaozhe Hu
    Computational Geosciences, 2021, 25 : 671 - 686
  • [2] ROBUST DISCRETIZATION OF FLOW IN FRACTURED POROUS MEDIA
    Boon, Wietse M.
    Nordbotten, Jan M.
    Yotov, Ivan
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2018, 56 (04) : 2203 - 2233
  • [3] MIXED-DIMENSIONAL AUXILIARY SPACE PRECONDITIONERS
    Budisa, Ana
    Boon, Wietse M.
    Hu, Xiaozhe
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2020, 42 (05) : A3367 - A3396
  • [4] Physics-based preconditioners for flow in fractured porous media
    Sandve, T. H.
    Keilegavlen, E.
    Nordbotten, J. M.
    WATER RESOURCES RESEARCH, 2014, 50 (02) : 1357 - 1373
  • [5] Gradient discretization of hybrid dimensional Darcy flows in fractured porous media
    Brenner, Konstantin
    Groza, Mayya
    Guichard, Cindy
    Lebeau, Gilles
    Masson, Roland
    NUMERISCHE MATHEMATIK, 2016, 134 (03) : 569 - 609
  • [6] Effective Preconditioners for Mixed-Dimensional Scalar Elliptic Problems
    Hu, Xiaozhe
    Keilegavlen, Eirik
    Nordbotten, Jan M.
    WATER RESOURCES RESEARCH, 2023, 59 (01)
  • [7] An approximate cut-cell discretization technique for flow in fractured porous media
    Karimi-Fard, Mohammad
    COMPUTATIONAL GEOSCIENCES, 2022, 26 (06) : 1409 - 1424
  • [8] Gradient discretization of a 3D-2D-1D mixed-dimensional diffusive model with resolved interface, application to the drying of a fractured porous medium
    Brenner, K.
    Chave, Florent
    Masson, R.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2023, 43 (06) : 3522 - 3563
  • [9] Gradient discretization of hybrid-dimensional Darcy flow in fractured porous media with discontinuous pressures at matrix-fracture interfaces
    Brenner, K.
    Hennicker, J.
    Masson, R.
    Samier, P.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2017, 37 (03) : 1551 - 1585
  • [10] Fluid Flow in Fractured Porous Media
    Liu, Richeng
    Jiang, Yujing
    PROCESSES, 2018, 6 (10):