Nanostructured Li3V2(PO4)3 cathode supported on reduced graphene oxide for lithium-ion batteries

被引:86
|
作者
Pei, Bo [1 ,2 ,3 ]
Jiang, Zhongqing [2 ,3 ]
Zhang, Weixin [1 ]
Yang, Zeheng [1 ]
Manthiram, Arumugam [2 ,3 ]
机构
[1] Hefei Univ Technol, Sch Chem Engn, Hefei 230009, Anhui, Peoples R China
[2] Univ Texas Austin, Texas Mat Inst, Electrochem Energy Lab, Austin, TX 78712 USA
[3] Univ Texas Austin, Texas Mat Inst, Mat Sci & Engn Program, Austin, TX 78712 USA
基金
中国国家自然科学基金;
关键词
Lithium-ion batteries; Lithium vanadium phosphate; Solvothermal synthesis; Graphene oxide; Electrochemical performance; ELECTROCHEMICAL PERFORMANCE; SHEETS; NANOCOMPOSITES; STORAGE;
D O I
10.1016/j.jpowsour.2013.03.171
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Li3V2(PO4)(3)/reduced graphene oxide (designated as Li3V2(PO4)(3)/rGO) and Li3V2(PO4)(3)/reduced modified graphene oxide (designated as Li3V2(PO4)(3)/rmGO) nanocomposites have been synthesized by a solvothermal method, followed by post-heat treatment at 800 degrees C, and explored as cathodes in lithium-ion cells. Lamellar GO sheets were modified with cetyltrimethylammonium bromide (CTAB) to form mGO with good dispersibility. The Li3V2(PO4)(3)/rGO (similar to 350 nm particles) and Li3V2(PO4)(3)/rmGO (similar to 200 nm particles) nanocomposite cathodes display discharge capacities of, respectively, 170 and 186 mA h g(-1) at 0.1 C rate and 118 and 135 mA h g(-1) at 10 C rate between 3.0 and 4.8 V. The higher discharge capacity and rate capability of Li3V2(PO4)(3)/rmGO compared to Li3V2(PO4)(3)/rGO are ascribed mainly to the smaller particle size of Li3V2(PO4)(3) and the tight contact between the Li3V2(PO4)(3) nanoparticles and the rmGO sheets. The tight contact enables fast electron transport through the underlying rmGO sheets to Li3V2(PO4)(3) nanoparticles. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:475 / 482
页数:8
相关论文
共 50 条
  • [1] Li3V2(PO4)3 cathode materials for lithium-ion batteries: A review
    Rui, Xianhong
    Yan, Qingyu
    Skyllas-Kazacos, Maria
    Lim, Tuti Mariana
    JOURNAL OF POWER SOURCES, 2014, 258 : 19 - 38
  • [2] Li3V2(PO4)3/graphene nanocomposites as cathode material for lithium ion batteries
    Liu, Haidong
    Gao, Po
    Fang, Jianhui
    Yang, Gang
    CHEMICAL COMMUNICATIONS, 2011, 47 (32) : 9110 - 9112
  • [3] Synthesis and characteristics of Li3V2(PO4)3 as cathode materials for lithium-ion batteries
    Zhu, Xianjun
    Liu, Yunxia
    Geng, Liangmei
    Chen, Longbin
    Liu, Hanxing
    Cao, Minghe
    SOLID STATE IONICS, 2008, 179 (27-32) : 1679 - 1682
  • [4] Preparation and characterization of Li3V2(PO4)3/MWCNTs cathode material for lithium-ion batteries
    Wu, Keliang
    IONICS, 2012, 18 (1-2) : 55 - 58
  • [5] Preparation and characterization of Li3V2(PO4)3/MWCNTs cathode material for lithium-ion batteries
    Keliang Wu
    Ionics, 2012, 18 : 55 - 58
  • [6] Combustion synthesized nanocrystalline Li3V2(PO4)3/C cathode for lithium-ion batteries
    Nathiya, K.
    Bhuvaneswari, D.
    Gangulibabu
    Kalaiselvi, N.
    MATERIALS RESEARCH BULLETIN, 2012, 47 (12) : 4300 - 4304
  • [7] Synthesis and electrochemical characteristics of cathode materials Li3V2(PO4)3 for lithium-ion batteries
    Liu, Su-Qin
    Tang, Lian-Xing
    Huang, Ke-Long
    Zhang, Jing
    Zhongguo Youse Jinshu Xuebao/Chinese Journal of Nonferrous Metals, 2005, 15 (08): : 1294 - 1299
  • [8] Configuration of Li-Ion Vanadium Batteries: Li3V2(PO4)3(cathode) ∥Li3V2(PO4)3(anode)
    Mao, Wen-feng
    Tang, Hao-qing
    Tang, Zhi-yuan
    Yan, Ji
    Xu, Qiang
    ECS ELECTROCHEMISTRY LETTERS, 2013, 2 (07) : A69 - A71
  • [9] Y-doped Li3V2(PO4)3/C as cathode material for lithium-ion batteries
    Xu, Shan
    Lu, Lin
    Jiang, Xueya
    Luo, Zhaohui
    Liu, Kang
    Li, Guohua
    Wang, Shiquan
    Feng, Chuanqi
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 2016, 46 (03) : 279 - 287
  • [10] Preparation and characterization of Li3V2(PO4)3 cathode material for lithium ion batteries
    Ying Jie-Rong
    Gao Jian
    Jiang Chang-Yin
    Li Wei
    Tang Chang-Ping
    JOURNAL OF INORGANIC MATERIALS, 2006, 21 (05) : 1097 - 1102