Recursive constructions for triangulations

被引:37
作者
Grannell, MJ
Griggs, TS
Sirán, J
机构
[1] Open Univ, Dept Pure Math, Milton Keynes MK7 6AA, Bucks, England
[2] Slovak Univ Technol Bratislava, Dept Math, SVF, Bratislava 81368, Slovakia
关键词
topological embedding; triangulation of K-n; K-n; complete graph; complete tripartite graph; Steiner triple system; non-isomorphic embeddings;
D O I
10.1002/jgt.10014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Three recursive constructions are presented; two deal with embeddings of complete graphs and one with embeddings of complete tripartite graphs. All three facilitate the construction of 2(an2 - o(n)2) non-isomorphic face 2-colourable triangulations of K-n and K-n,K-n,K-n in orientable and non-orientable surfaces for values of n lying in certain residue classes and for appropriate constants a. (C) 2002 John Wiley Sons, Inc.
引用
收藏
页码:87 / 107
页数:21
相关论文
共 10 条
[1]  
[Anonymous], 1974, MAP COLOR THEOREM, DOI DOI 10.1007/978-3-642-65759-7
[2]   Exponential families of non-isomorphic triangulations of complete graphs [J].
Bonnington, CP ;
Grannell, MJ ;
Griggs, TS ;
Sirán, J .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2000, 78 (02) :169-184
[3]   On the construction of balanced incomplete block designs [J].
Bose, RC .
ANNALS OF EUGENICS, 1939, 9 :353-399
[4]   Face 2-colourable triangular embeddings of complete graphs [J].
Grannell, MJ ;
Griggs, TS ;
Siran, J .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1998, 74 (01) :8-19
[5]  
Grannell MJ, 1998, J COMB DES, V6, P325
[6]  
Gross J.L., 1987, Topological graph theory
[7]   3 NONISOMORPHIC TRIANGULATIONS OF AN ORIENTABLE SURFACE WITH THE SAME COMPLETE GRAPH [J].
LAWRENCENKO, S ;
NEGAMI, S ;
WHITE, AT .
DISCRETE MATHEMATICS, 1994, 135 (1-3) :367-369
[9]   NONISOMORPHIC STEINER TRIPLE SYSTEMS [J].
WILSON, RM .
MATHEMATISCHE ZEITSCHRIFT, 1974, 135 (04) :303-313
[10]  
Youngs J. W. T., 1970, GRAPH THEORY ITS APP, P17