Pathwise approximation of random ordinary differential equations

被引:31
作者
Grüne, L [1 ]
Kloeden, PE [1 ]
机构
[1] Univ Frankfurt, Fachbereich Math, D-60054 Frankfurt, Germany
来源
BIT | 2001年 / 41卷 / 04期
关键词
random ordinary differential equation; Euler scheme; Henn scheme; time averaging;
D O I
10.1023/A:1021995918864
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Standard error estimates for one-step numerical schemes for nonautonomous ordinary differential equations usually assume appropriate smoothness in both time and state variables and thus are not suitable for the pathwise approximation of random ordinary differential equations which are typically at most continuous or Holder continuous in the time variable. Here it is shown that the usual higher order of convergence can be retained if one first averages the time dependence over each discretization subinterval.
引用
收藏
页码:711 / 721
页数:11
相关论文
共 4 条
  • [1] Arnold L., 1998, Springer Monographs in Mathematics
  • [2] Butcher J. C., 1987, The Numerical Analysis of Ordinary Differential Equations: Runge-Kutta and General Linear Methods
  • [3] HAIRER E, 1988, SOLVING ORDINARY DIF, V1
  • [4] Kloeden P.E., 1999, NUMERICAL SOLUTION S, DOI DOI 10.1007/978-3-662-12616-5