AN EFFICIENT IMPLICIT FEM SCHEME FOR FRACTIONAL-IN-SPACE REACTION-DIFFUSION EQUATIONS

被引:187
作者
Burrage, Kevin [1 ,2 ]
Hale, Nicholas [3 ]
Kay, David [1 ]
机构
[1] Univ Oxford, Computat Biol Grp, Oxford OX1 3QD, England
[2] Queensland Univ Technol, Sch Math Sci, Brisbane, Qld 4001, Australia
[3] Univ Oxford, Math Inst, Oxford Ctr Collaborat Appl Math, Oxford OX1 3LB, England
关键词
finite elements; fractional diffusion; numerical solvers; LAPLACIAN EVOLUTION EQUATION; ANOMALOUS DIFFUSION; NUMERICAL-METHODS; DIFFERENCE-METHODS; ITERATIVE METHOD; MATRIX FUNCTIONS; RATIONAL KRYLOV; VECTOR CALCULUS; RANDOM-WALKS; TIME;
D O I
10.1137/110847007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Fractional differential equations are becoming increasingly used as a modelling tool for processes associated with anomalous diffusion or spatial heterogeneity. However, the presence of a fractional differential operator causes memory (time fractional) or nonlocality ( space fractional) issues that impose a number of computational constraints. In this paper we develop efficient, scalable techniques for solving fractional-in-space reaction diffusion equations using the finite element method on both structured and unstructured grids via robust techniques for computing the fractional power of a matrix times a vector. Our approach is show-cased by solving the fractional Fisher and fractional Allen-Cahn reaction-diffusion equations in two and three spatial dimensions, and analyzing the speed of the traveling wave and size of the interface in terms of the fractional power of the underlying Laplacian operator.
引用
收藏
页码:A2145 / A2172
页数:28
相关论文
共 71 条
  • [1] FIELD-STUDY OF DISPERSION IN A HETEROGENEOUS AQUIFER .2. SPATIAL MOMENTS ANALYSIS
    ADAMS, EE
    GELHAR, LW
    [J]. WATER RESOURCES RESEARCH, 1992, 28 (12) : 3293 - 3307
  • [2] Akhiezer N. I., 1990, TRANSL MATH MONOGR, V79
  • [3] A nonlocal p-Laplacian evolution equation with Neumann boundary conditions
    Andreu, F.
    Mazon, J. M.
    Rossi, J. D.
    Toledo, J.
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2008, 90 (02): : 201 - 227
  • [4] A NONLOCAL p-LAPLACIAN EVOLUTION EQUATION WITH NONHOMOGENEOUS DIRICHLET BOUNDARY CONDITIONS
    Andreu, F.
    Mazon, J. M.
    Rossi, J. D.
    Toledo, J.
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2008, 40 (05) : 1815 - 1851
  • [5] [Anonymous], 2008, Functions of matrices: theory and computation
  • [6] [Anonymous], 2008, THESIS QUEENSLAND U
  • [7] Subordinated advection-dispersion equation for contaminant transport
    Baeumer, B
    Benson, DA
    Meerschaert, MM
    Wheatcraft, SW
    [J]. WATER RESOURCES RESEARCH, 2001, 37 (06) : 1543 - 1550
  • [8] AN ITERATIVE METHOD FOR THE HELMHOLTZ-EQUATION
    BAYLISS, A
    GOLDSTEIN, CI
    TURKEL, E
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1983, 49 (03) : 443 - 457
  • [9] Limit theorem for continuous-time random walks with two time scales
    Becker-Kern, P
    Meerschaert, MM
    Scheffler, HP
    [J]. JOURNAL OF APPLIED PROBABILITY, 2004, 41 (02) : 455 - 466
  • [10] Superlinear convergence of the rational Arnoldi method for the approximation of matrix functions
    Beckermann, Bernhard
    Guettel, Stefan
    [J]. NUMERISCHE MATHEMATIK, 2012, 121 (02) : 205 - 236