Doxorubicin and chloroquine coencapsulated liposomes: preparation and improved cytotoxicity on human breast cancer cells

被引:19
作者
Qiu, Liyan [1 ]
Yao, Mingfei [1 ]
Gao, Menghua [1 ]
Zhao, Qinghe [1 ]
机构
[1] Zhejiang Univ, Coll Pharmaceut Sci, Hangzhou 310058, Zhejiang, Peoples R China
关键词
Doxorubicin; chloroquine; liposome; multidrug resistance; RESISTANT TUMOR-CELLS; PH-GRADIENT METHOD; MULTIDRUG-RESISTANCE; IN-VITRO; PHOSPHATE; DELIVERY; REVERSAL; DRUG;
D O I
10.3109/08982104.2012.684150
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Doxorubicin, as a widely used chemotherapeutic, always causes multidrug resistance in human cancer cells. To circumvent drug resistance, we developed a novel formulation where doxorubicin hydrochloride (DOX) and chloroquine phosphate (CQ) were simultaneously loaded into liposomes by a pH-gradient method where CQ played the role of a chemical sensitizer. The various factors were investigated to optimize the formulation and manufacturing conditions of DOX and CQ coencapsulated liposomes (DCL). The resultant DCLs achieved the high encapsulation efficiency of both drugs over 90%. Further, DCLs significantly displayed resistance reversal action on a doxorubicin-resistant human breast cancer cell line (MCF-7/ADR) through the cooperation of CQ with DOX. The reversal fold of DCL with the DOX/CQ/soybean phosphatidylcholine weight ratio of 0.5:1:50 was 5.7, compared to free DOX. These results demonstrate that DCL is a promising formulation for the treatment of DOX-resistant breast cancer.
引用
收藏
页码:245 / 253
页数:9
相关论文
共 20 条
[1]   Glycoconjugated peptide dendrimers-based nanoparticulate system for the delivery of chloroquine phosphate [J].
Agrawal, Payal ;
Gupta, Umesh ;
Jain, N. K. .
BIOMATERIALS, 2007, 28 (22) :3349-3359
[2]   PH GRADIENTS AND MEMBRANE-TRANSPORT IN LIPOSOMAL SYSTEMS [J].
CULLIS, PR ;
BALLY, MB ;
MADDEN, TD ;
MAYER, LD ;
HOPE, MJ .
TRENDS IN BIOTECHNOLOGY, 1991, 9 (08) :268-272
[3]   Remote loading of doxorubicin into liposomes driven by a transmembrane phosphate gradient [J].
Fritze, Andreas ;
Hens, Felicitas ;
Kimpfler, Andrea ;
Schubert, Rolf ;
Peschka-Suess, Regine .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2006, 1758 (10) :1633-1640
[4]   Reversal of multidrug resistance by reduction-sensitive linear cationic click polymer/iMDR1-pDNA complex nanoparticles [J].
Gao, Yu ;
Chen, Lingli ;
Zhang, Zhiwen ;
Chen, Yi ;
Li, Yaping .
BIOMATERIALS, 2011, 32 (06) :1738-1747
[5]   Multidrug resistance in cancer: Role of ATP-dependent transporters [J].
Gottesman, MM ;
Fojo, T ;
Bates, SE .
NATURE REVIEWS CANCER, 2002, 2 (01) :48-58
[6]   Multi-functional nanocarriers to overcome tumor drug resistance [J].
Jabr-Milane, Lara S. ;
van Vlerken, Lilian E. ;
Yadav, Sunita ;
Amiji, Mansoor M. .
CANCER TREATMENT REVIEWS, 2008, 34 (07) :592-602
[7]   Doxorubicin loaded iron oxide nanoparticles overcome multidrug resistance in cancer in vitro [J].
Kievit, Forrest M. ;
Wang, Freddy Y. ;
Fang, Chen ;
Mok, Hyejung ;
Wang, Kui ;
Silber, John R. ;
Ellenbogen, Richard G. ;
Zhang, Miqin .
JOURNAL OF CONTROLLED RELEASE, 2011, 152 (01) :76-83
[8]   Mechanical properties and stability measurement of cholesterol-containing liposome on mica by atomic force microscopy [J].
Liang, XM ;
Mao, GZ ;
Ng, KYS .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2004, 278 (01) :53-62
[9]   Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer [J].
Malam, Yogeshkumar ;
Loizidou, Marilena ;
Seifalian, Alexander M. .
TRENDS IN PHARMACOLOGICAL SCIENCES, 2009, 30 (11) :592-599
[10]   Reversal of multidrug resistance by co-delivery of tariquidar (XR9576) and paclitaxel using long-circulating liposomes [J].
Patel, Niravkumar R. ;
Rathi, Alok ;
Mongayt, Dmitriy ;
Torchilin, Vladimir P. .
INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2011, 416 (01) :296-299