Neural changes after training to perform cognitive tasks

被引:34
作者
Qi, Xue-Lian [1 ]
Constantinidis, Christos [1 ]
机构
[1] Wake Forest Univ, Bowman Gray Sch Med, Dept Neurobiol & Anat, Winston Salem, NC 27157 USA
基金
美国国家卫生研究院;
关键词
Prefrontal cortex; Cognitive training; Monkey; Neurophysiology; Neuron; PRIMATE PREFRONTAL CORTEX; SPATIAL WORKING-MEMORY; DECISION-MAKING; INFEROTEMPORAL CORTEX; NEURONAL-ACTIVITY; RHESUS-MONKEY; FRONTAL-LOBE; REPETITION SUPPRESSION; CORTICAL-NEURONS; PARIETAL CORTEX;
D O I
10.1016/j.bbr.2012.12.017
中图分类号
B84 [心理学]; C [社会科学总论]; Q98 [人类学];
学科分类号
03 ; 0303 ; 030303 ; 04 ; 0402 ;
摘要
Cognitive operations requiring working memory rely on the activity of neurons in areas of the association cortex, most prominently the lateral prefrontal cortex. Human imaging and animal neurophysiological studies indicate that this activity is shaped by learning, though much is unknown about how much training alters neural activity and cortical organization. Results from non-human primates demonstrate that prior to any training in cognitive tasks, prefrontal neurons respond to stimuli, exhibit persistent activity after their offset, and differentiate between matching and non-matching stimuli presented in sequence. A number of important changes also occur after training in a working memory task. More neurons are recruited by the stimuli and exhibit higher firing rates, particularly during the delay period. Operant stimuli that need to be recognized in order to perform the task elicit higher overall rates of responses, while the variability of individual discharges and correlation of discharges between neurons decrease after training. New information is incorporated in the activity of a small population of neurons highly specialized for the task and in a larger population of neurons that exhibit modest task related information, while information about other aspects of stimuli remains present in neuronal activity. Despite such changes, the relative selectivity of the dorsal and ventral aspect of the lateral prefrontal cortex is not radically altered with regard to spatial and non-spatial stimuli after training. Collectively, these results provide insights on the nature and limits of cortical plasticity mediating cognitive tasks. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:235 / 243
页数:9
相关论文
共 116 条
[1]   Functional neuroanatomy of executive processes involved in dual-task performance [J].
Adcock, RA ;
Constable, RT ;
Gore, JC ;
Goldman-Rakic, PS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (07) :3567-3572
[2]   Task-specific neural activity in the primate prefrontal cortex [J].
Asaad, WF ;
Rainer, G ;
Miller, EK .
JOURNAL OF NEUROPHYSIOLOGY, 2000, 84 (01) :451-459
[3]   Neural activity in the primate prefrontal cortex during associative learning [J].
Asaad, WF ;
Rainer, G ;
Miller, EK .
NEURON, 1998, 21 (06) :1399-1407
[4]   Parallel processing of serial movements in prefrontal cortex [J].
Averbeck, BB ;
Chafee, MV ;
Crowe, DA ;
Georgopoulos, AP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (20) :13172-13177
[5]   Working memory: Looking back and looking forward [J].
Baddeley, A .
NATURE REVIEWS NEUROSCIENCE, 2003, 4 (10) :829-839
[6]   Is the rostro-caudal axis of the frontal lobe hierarchical? [J].
Badre, David ;
D'Esposito, Mark .
NATURE REVIEWS NEUROSCIENCE, 2009, 10 (09) :659-669
[7]   Prefrontal cortex and decision making in a mixed-strategy game [J].
Barraclough, DJ ;
Conroy, ML ;
Lee, D .
NATURE NEUROSCIENCE, 2004, 7 (04) :404-410
[8]   Dissociable Components of Rule-Guided Behavior Depend on Distinct Medial and Prefrontal Regions [J].
Buckley, Mark J. ;
Mansouri, Farshad A. ;
Hoda, Hassan ;
Mahboubi, Majid ;
Browning, Philip G. F. ;
Kwok, Sze C. ;
Phillips, Adam ;
Tanaka, Keiji .
SCIENCE, 2009, 325 (5936) :52-58
[9]   POSTERIOR PARIETAL CORTEX IN RHESUS-MONKEY .2. EVIDENCE FOR SEGREGATED CORTICOCORTICAL NETWORKS LINKING SENSORY AND LIMBIC AREAS WITH THE FRONTAL-LOBE [J].
CAVADA, C ;
GOLDMANRAKIC, PS .
JOURNAL OF COMPARATIVE NEUROLOGY, 1989, 287 (04) :422-445
[10]   Variance as a Signature of Neural Computations during Decision Making [J].
Churchland, Anne. K. ;
Kiani, R. ;
Chaudhuri, R. ;
Wang, Xiao-Jing ;
Pouget, Alexandre ;
Shadlen, M. N. .
NEURON, 2011, 69 (04) :818-831