Hybridization of oxidized MWNT and silver powder in polyurethane matrix for electromagnetic interference shielding application

被引:27
作者
Kim, YJ [1 ]
An, KJ
Suh, KS
Choi, HD
Kwon, JH
Chung, YC
Kim, WN
Lee, AK
Choi, JI
Yoon, HG
机构
[1] Korea Univ, Dept Mat Sci & Engn, Seoul 136713, South Korea
[2] Elect & Telecommun Res Inst, Electromagnet Environm Res Team, Taejon 305350, South Korea
[3] Seokyeong Univ, Dept Informat & Commun Engn, Seoul 136704, South Korea
[4] Korea Univ, Dept Biol & Chem Engn, Seoul 136713, South Korea
关键词
carbon nanotubes (CNTs); electrical properties; electromagnetic interference (EMI) shielding effectiveness; hybridization; oxidation;
D O I
10.1109/TEMC.2005.858759
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Multiwalled carbon nanotubes (MWNTs) are chemically modified with respect to various different oxidative conditions, including the acid concentration, treatment time, and temperature. The conductivity of polyurethane (PU) composites filled with the MWNTs oxidized under optimal condition is measured as a function of frequency with the content of MWNTs and analyzed using percolation theory. Because the PU composites filled only with the MWNTs cannot satisfy the requirements for materials providing shielding against electromagnetic waves, conductive polymer composites are fabricated by the hybridization of MWNTs with Ag flakes. It is observed that a small amount of the MWNTs remarkably enhances the conductivity and shielding effectiveness of the MWNT/Ag flake/PU composites, by bridging the gap between the flaky Ag clusters. The electromagnetic interference shielding effectiveness of the composites can be controlled from about 60 dB to more than 80 dB at an extremely low loading level of both the MWNTs and the Ag flakes in the frequency range from 10 to 1000 MHz.
引用
收藏
页码:872 / 879
页数:8
相关论文
共 16 条
[1]  
APPENZELLER J, 2003, NANOELECTRONICS INFO, P475
[2]   DC and AC conductivity of carbon nanotubes-polyepoxy composites [J].
Barrau, S ;
Demont, P ;
Peigney, A ;
Laurent, C ;
Lacabanne, C .
MACROMOLECULES, 2003, 36 (14) :5187-5194
[3]   Transport properties of PMMA-carbon nanotubes composites [J].
Benoit, JM ;
Corraze, B ;
Lefrant, S ;
Blau, WJ ;
Bernier, P ;
Chauvet, O .
SYNTHETIC METALS, 2001, 121 (1-3) :1215-1216
[4]   Broadband ac conductivity of conductor-polymer composites [J].
Connor, MT ;
Roy, S ;
Ezquerra, TA ;
Calleja, FJB .
PHYSICAL REVIEW B, 1998, 57 (04) :2286-2294
[5]   Multi-step purification of carbon nanotubes [J].
Hou, PX ;
Bai, S ;
Yang, QH ;
Liu, C ;
Cheng, HM .
CARBON, 2002, 40 (01) :81-85
[6]   HELICAL MICROTUBULES OF GRAPHITIC CARBON [J].
IIJIMA, S .
NATURE, 1991, 354 (6348) :56-58
[7]   Experimental observation of scaling laws for alternating current and direct current conductivity in polymer-carbon nanotube composite thin films [J].
Kilbride, BE ;
Coleman, JN ;
Fraysse, J ;
Fournet, P ;
Cadek, M ;
Drury, A ;
Hutzler, S ;
Roth, S ;
Blau, WJ .
JOURNAL OF APPLIED PHYSICS, 2002, 92 (07) :4024-4030
[8]  
MANUELA HB, 2001, CARBON, V39, P375
[9]   Electrical properties of single wall carbon nanotube reinforced polyimide composites [J].
Ounaies, Z ;
Park, C ;
Wise, KE ;
Siochi, EJ ;
Harrison, JS .
COMPOSITES SCIENCE AND TECHNOLOGY, 2003, 63 (11) :1637-1646
[10]   Dielectric spectroscopy on melt processed polycarbonate -: multiwalled carbon nanotube composites [J].
Pötschke, P ;
Dudkin, SM ;
Alig, I .
POLYMER, 2003, 44 (17) :5023-5030