Optimality functions in stochastic programming

被引:16
作者
Royset, J. O. [1 ]
机构
[1] USN, Postgrad Sch, Dept Operat Res, Monterey, CA 93943 USA
关键词
Stochastic programming; Optimality conditions; Validation analysis; Algorithms; SAMPLE AVERAGE APPROXIMATION; FAILURE PROBABILITY; OPTIMIZATION; DESIGN;
D O I
10.1007/s10107-011-0453-3
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Optimality functions define stationarity in nonlinear programming, semi-infinite optimization, and optimal control in some sense. In this paper, we consider optimality functions for stochastic programs with nonlinear, possibly nonconvex, expected value objective and constraint functions. We show that an optimality function directly relates to the difference in function values at a candidate point and a local minimizer. We construct confidence intervals for the value of the optimality function at a candidate point and, hence, provide a quantitative measure of solution quality. Based on sample average approximations, we develop an algorithm for classes of stochastic programs that include CVaR-problems and utilize optimality functions to select sample sizes.
引用
收藏
页码:293 / 321
页数:29
相关论文
共 50 条
[21]   PENALTY METHODS WITH STOCHASTIC APPROXIMATION FOR STOCHASTIC NONLINEAR PROGRAMMING [J].
Wang, Xiao ;
Ma, Shiqian ;
Yuan, Ya-Xiang .
MATHEMATICS OF COMPUTATION, 2017, 86 (306) :1793-1820
[22]   MOREAU ENVELOPE OF SUPREMUM FUNCTIONS WITH APPLICATIONS TO INFINITE AND STOCHASTIC PROGRAMMING\ast [J].
Perez-Aros, Pedro ;
Vilches, Emilio .
SIAM JOURNAL ON OPTIMIZATION, 2021, 31 (03) :1635-1657
[23]   Optimal PID Controller Tuning Using Stochastic Programming Techniques [J].
Renteria, Jose A. ;
Cao, Yankai ;
Dowling, Alexander W. ;
Zavala, Victor M. .
AICHE JOURNAL, 2018, 64 (08) :2997-3010
[24]   The bilevel programming problem: reformulations, constraint qualifications and optimality conditions [J].
Dempe, S. ;
Zemkoho, A. B. .
MATHEMATICAL PROGRAMMING, 2013, 138 (1-2) :447-473
[25]   Optimality and Duality for Nonsmooth Minimax Programming Problems Using Convexifactor [J].
Ahmad, I. ;
Kummari, Krishna ;
Singh, Vivek ;
Jayswal, Anurag .
FILOMAT, 2017, 31 (14) :4555-4570
[26]   Optimality conditions for nonconvex semidefinite programming [J].
Forsgren, A .
MATHEMATICAL PROGRAMMING, 2000, 88 (01) :105-128
[27]   OPTIMALITY AND DUALITY FOR MULTIOBJECTIVE NONSMOOTH PROGRAMMING [J].
BHATIA, D ;
AGGARWAL, S .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1992, 57 (03) :360-367
[28]   The check of optimality conditions in nonsmooth programming [J].
Qinghi Y. .
Applied Mathematics-A Journal of Chinese Universities, 1998, 13 (3) :347-350
[29]   Sufficient Optimality Conditions in Bilevel Programming [J].
Mehlitz, Patrick ;
Zemkoho, Alain B. .
MATHEMATICS OF OPERATIONS RESEARCH, 2021, 46 (04) :1573-1598
[30]   Optimality conditions for sparse nonlinear programming [J].
Pan, LiLi ;
Xiu, NaiHua ;
Fan, Jun .
SCIENCE CHINA-MATHEMATICS, 2017, 60 (05) :759-776