Propagation of chaos for many-boson systems in one dimension with a point pair-interaction

被引:12
作者
Ammari, Z. [1 ]
Breteaux, S. [1 ]
机构
[1] Univ Rennes 1, IRMAR, UMR CNRS 6625, F-35042 Rennes, France
关键词
classical limit; coherent state; Fock space; non-linear Schrodinger equation; mean field limit; non-autonomous Schrodinger equation; MEAN-FIELD-LIMIT; RIGOROUS DERIVATION; SCATTERING THEORY; CLASSICAL-LIMIT; DYNAMICS; EQUATION;
D O I
10.3233/ASY-2011-1064
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the mean field limit of nonrelativistic quantum many-boson systems with delta potential in one-dimensional space. Such problem is related to the semiclassical limit of a second quantized Hamiltonian with an interaction given by a quartic Wick product. In this framework, we show that the evolution of coherent states is semiclassically given by squeezed coherent states under the action of a time-dependent affine Bogoliubov transformation. Results similar to those stated by Hepp [Comm. Math. Phys. 35 (1974), 265-277] and Ginibre-Velo [Comm. Math. Phys. 66 (1979), 37-76 and 68 (1979), 45-68] are proved. Furthermore, we show propagation of chaos for Schrodinger dynamics in the mean field limit using the argument of Rodnianski-Schlein [Comm. Math. Phys. 291 (2009), 31-61]. Thus, we provide a derivation of the cubic NLS equation in one dimension.
引用
收藏
页码:123 / 170
页数:48
相关论文
共 34 条
[1]  
Adami R, 2004, ASYMPTOTIC ANAL, V40, P93
[2]   Rigorous derivation of the cubic NLS in dimension one [J].
Adami, Riccardo ;
Golse, Francois ;
Teta, Alessandro .
JOURNAL OF STATISTICAL PHYSICS, 2007, 127 (06) :1193-1220
[3]   Mean field limit for bosons and propagation of Wigner measures [J].
Ammari, Z. ;
Nier, F. .
JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (04)
[4]   Mean Field Limit for Bosons and Infinite Dimensional Phase-Space Analysis [J].
Ammari, Zied ;
Nier, Francis .
ANNALES HENRI POINCARE, 2008, 9 (08) :1503-1574
[5]   Derivation of the Schrodinger-Poisson equation from the quantum N-body problem [J].
Bardos, C ;
Erdös, L ;
Golse, F ;
Mauser, N ;
Yau, HT .
COMPTES RENDUS MATHEMATIQUE, 2002, 334 (06) :515-520
[6]  
Bardos C., 2000, Methods Appl. Anal., V7, P275
[7]   A proof of the Gutzwiller semiclassical trace formula using coherent states decomposition [J].
Combescure, M ;
Ralston, J ;
Robert, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 202 (02) :463-480
[8]  
DELLANTONIO GF, 1967, COMMUN PUR APPL MATH, V20, P413
[9]   Mean field dynamics of boson stars [J].
Elgart, Alexander ;
Schlein, Benjamin .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2007, 60 (04) :500-545
[10]  
Erdo, 2001, Adv. Theor. Math. Phys., V5, P1169