Metal ion-mediated structure and properties of α-Fe2O3 nanoparticles

被引:13
|
作者
Yan, Dong [1 ,2 ]
Zhao, Haiyan [1 ,2 ]
Pei, Jiayun [1 ,2 ]
Wang, Xiumei [3 ,4 ]
机构
[1] Tsinghua Univ, Dept Mech Engn, Beijing 100084, Peoples R China
[2] Tsinghua Univ, State Key Lab Tribol, Beijing 100084, Peoples R China
[3] Tsinghua Univ, Sch Mat Sci & Engn, Beijing 100084, Peoples R China
[4] Tsinghua Univ, State Key Lab New Ceram & Fine Proc, Beijing 100084, Peoples R China
基金
国家重点研发计划; 高等学校博士学科点专项科研基金; 北京市自然科学基金;
关键词
Hematite nanoparticles; Divalent cation; Dopants; Catalysis; Ammonium perchlorate; Thermal decomposition; EXPOSED; 104; FACETS; THERMAL-DECOMPOSITION; MAGNETIC-PROPERTIES; CATALYTIC-ACTIVITY; HEMATITE; MICRO; NANOSTRUCTURES; NANOCOMPOSITE; PERFORMANCE; OXIDATION;
D O I
10.1016/j.materresbull.2018.01.010
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
To assess the relationship between metal ion-mediated microstructures and the macro-performance, Cu- and Zn-doped alpha-Fe2O3 nanoparticles were prepared via a solvothermal method. The morphologies of the as-synthesized nanoparticles were investigated by scanning electron microscopy and transmission electron microscopy. The results revealed that the sizes and morphologies could be regulated by doping with divalent cations. The structures of the as-synthesized nanoparticles were characterized by X-ray diffraction and Raman spectroscopy, indicating that Cu2+ and Zn2+ ions had diffused into the lattice of alpha-Fe2O3 matrix. The magnetization behaviors of these nanoparticles were measured to analyze the effect of doping on alpha-Fe2O3. Furthermore, the catalytic activities of Cu- and Zn-doped alpha-Fe2O3 nanoparticles demonstrated that the high-temperature decomposition temperature of ammonium perchlorate could be lowered by 115 degrees C and 107 degrees C, respectively, compared to that of ammonium perchlorate without catalyst. The enhanced catalytic activity could be attributed to the defect structure induced by doping with divalent cations.
引用
收藏
页码:100 / 106
页数:7
相关论文
共 50 条
  • [31] Preparation of nanoparticles and hollow spheres of α-Fe2O3 and their properties
    Hong Wang
    Wangchang Geng
    Ying Wang
    Research on Chemical Intermediates, 2011, 37 : 389 - 395
  • [32] Large nonlinear optical properties of Fe2O3 nanoparticles
    Yu, BL
    Zhu, CS
    Gan, FX
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2000, 8 (04): : 360 - 364
  • [33] Synthesis and vibrational properties of hematite (α-Fe2O3) nanoparticles
    Ramesh, R.
    Sohila, S.
    Muthamizhchelvan, C.
    Rajalakshmi, M.
    Ramya, S.
    Ponnusamy, S.
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2011, 22 (09) : 1357 - 1360
  • [34] Synthesis and vibrational properties of hematite (α-Fe2O3) nanoparticles
    R. Ramesh
    S. Sohila
    C. Muthamizhchelvan
    M. Rajalakshmi
    S. Ramya
    S. Ponnusamy
    Journal of Materials Science: Materials in Electronics, 2011, 22 : 1357 - 1360
  • [35] Synthesis of Porous Network-Like α-Fe2O3 and α/γ-Fe2O3 Nanoparticles and Investigation of Their Photocatalytic Properties
    M. Ghasemifard
    G. Heidari
    M. Ghamari
    E. Fathi
    M. Izi
    Nanotechnologies in Russia, 2019, 14 : 353 - 361
  • [36] Preparation of nanoparticles and hollow spheres of α-Fe2O3 and their properties
    Wang, Hong
    Geng, Wangchang
    Wang, Ying
    RESEARCH ON CHEMICAL INTERMEDIATES, 2011, 37 (2-5) : 389 - 395
  • [37] Preparation and Magnetic Properties of Parallelepiped α-Fe2O3 Nanoparticles
    Liu, Zhong
    Ding, Xiuping
    Yu, Ruitao
    2016 3RD INTERNATIONAL CONFERENCE ON SMART MATERIALS AND NANOTECHNOLOGY IN ENGINEERING (SMNE 2016), 2016, : 23 - 27
  • [38] Synthesis of Porous Network-Like α-Fe2O3 and α/γ-Fe2O3 Nanoparticles and Investigation of Their Photocatalytic Properties
    Ghasemifard, M.
    Heidari, G.
    Ghamari, M.
    Fathi, E.
    Izi, M.
    NANOTECHNOLOGIES IN RUSSIA, 2019, 14 (7-8): : 353 - 361
  • [39] In situ ambient pressure XPS observation of surface chemistry and electronic structure of α-Fe2O3 and γ-Fe2O3 nanoparticles
    Flak, Dorota
    Chen, Qianli
    Mun, Bongjin Simon
    Liu, Zhi
    Rekas, Mieczyslaw
    Braun, Artur
    APPLIED SURFACE SCIENCE, 2018, 455 : 1019 - 1028
  • [40] Magnetic nanoparticles with enhanced γ-Fe2O3 to α-Fe2O3 phase transition temperature
    Gnanaprakash, G.
    Ayyappan, S.
    Jayakumar, T.
    Philip, John
    Raj, Baldev
    NANOTECHNOLOGY, 2006, 17 (23) : 5851 - 5857