Stable Hierarchical Bimetal-Organic Nanostructures as HighPerformance Electrocatalysts for the Oxygen Evolution Reaction

被引:470
作者
Zhou, Wei [1 ]
Huang, Dan-Dan [1 ]
Wu, Ya-Pan [1 ]
Zhao, Jun [1 ]
Wu, Tao [1 ]
Zhang, Jian [1 ]
Li, Dong-Sheng [1 ]
Sun, Chenghua [2 ]
Feng, Pingyun [3 ]
Bu, Xianhui [4 ]
机构
[1] China Three Gorges Univ, Coll Mat & Chem Engn, Hubei Prov Collaborat Innovat Ctr New Energy Micr, Key Lab Inorgan Nonmetall Crystalline & Energy Co, 8 Daxue Rd, Yichang 443002, Peoples R China
[2] Swinburne Univ Technol, Fac Sci Engn & Technol, Dept Chem & Biotechnol, Hawthorn, Vic 3122, Australia
[3] Univ Calif Riverside, Dept Chem, Riverside, CA 92521 USA
[4] Calif State Univ Long Beach, Dept Chem & Biochem, 1250 Bellflower Blvd, Long Beach, CA 90840 USA
关键词
bimetal-organic nanosheets; hierarchical nanostructures; metal-organic frameworks; oxygen evolution reaction; HYDROGEN EVOLUTION; WATER OXIDATION; EFFICIENT; FRAMEWORKS; NANOSHEETS; IRO2;
D O I
10.1002/anie.201813634
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The integration of heterometallic units and nanostructures into metal-organic frameworks (MOFs) used for the oxygen evolution reaction (OER) can enhance the electrocatalytic performance and help elucidate underlying mechanisms. We have synthesized a series of stable MOFs (CTGU-10a1-d1) based on trinuclear metal carboxylate clusters and a hexadentate carboxylate ligand with a (6,6)-connected nia net. We also present a strategy to synthesize hierarchical bimetallic MOF nanostructures (CTGU-10a2-d2). Among these, CTGU-10c2 is the best material for the OER, with an overpotential of 240mV at a current density of 10mAcm(-2) and a Tafel slope of 58mVdec(-1). This is superior to RuO2 and confirms CTGU-10c2 as one of the few known high-performing pure-phase MOF-OER electrocatalysts. Notably, bimetallic CTGU-10b2 and c2 show an improved OER activity over monometallic CTGU-10a2 and d2. Both DFT and experiments show that the remarkable OER performance of CTGU-10c2 is due to the presence of unsaturated metal sites, a hierarchical nanobelt architecture, and the Ni-Co coupling effect.
引用
收藏
页码:4227 / 4231
页数:5
相关论文
共 52 条
  • [1] [Anonymous], 2017, ANGEW CHEM
  • [2] [Anonymous], 2018, ANGEW CHEM
  • [3] Electron delocalization and charge mobility as a function of reduction in a metal-organic framework
    Aubrey, Michael L.
    Wiers, Brian M.
    Andrews, Sean C.
    Sakurai, Tsuneaki
    Reyes-Lillo, Sebastian E.
    Hamed, Samia M.
    Yu, Chung-Jui
    Darago, Lucy E.
    Mason, Jarad A.
    Baeg, Jin-Ook
    Grandjean, Fernande
    Long, Gary J.
    Seki, Shu
    Neaton, Jeffrey B.
    Yang, Peidong
    Long, Jeffrey R.
    [J]. NATURE MATERIALS, 2018, 17 (07) : 625 - +
  • [4] Molecular Catalysts for Water Oxidation
    Blakemore, James D.
    Crabtree, Robert H.
    Brudvig, Gary W.
    [J]. CHEMICAL REVIEWS, 2015, 115 (23) : 12974 - 13005
  • [5] Two-Dimensional Metal-Organic Surfaces for Efficient Hydrogen Evolution from Water
    Clough, Andrew J.
    Yoo, Joseph W.
    Mecklenburg, Matthew H.
    Marinescu, Smaranda C.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (01) : 118 - 121
  • [6] 2D Conductive Iron-Quinoid Magnets Ordering up to Tc=105 K via Heterogenous Redox Chemistry
    DeGayner, Jordan A.
    Jeon, Ie-Rang
    Sun, Lei
    Dinca, Mircea
    Harris, T. David
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (11) : 4175 - 4184
  • [7] Electrocatalytic Metal-Organic Frameworks for Energy Applications
    Downes, Courtney A.
    Marinescu, Smaranda C.
    [J]. CHEMSUSCHEM, 2017, 10 (22) : 4374 - 4392
  • [8] Ultrathin metal-organic framework array for efficient electrocatalytic water splitting
    Duan, Jingjing
    Chen, Sheng
    Zhao, Chuan
    [J]. NATURE COMMUNICATIONS, 2017, 8
  • [9] Dual Tuning of Ni-Co-A (A = P, Se, O) Nanosheets by Anion Substitution and Holey Engineering for Efficient Hydrogen Evolution
    Fang, Zhiwei
    Peng, Lele
    Qian, Yumin
    Zhang, Xiao
    Xie, Yujun
    Cha, Judy J.
    Yu, Guihua
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2018, 140 (15) : 5241 - 5247
  • [10] The stability number as a metric for electrocatalyst stability benchmarking
    Geiger, Simon
    Kasian, Olga
    Ledendecker, Marc
    Pizzutilo, Enrico
    Mingers, Andrea M.
    Fu, Wen Tian
    Diaz-Morales, Oscar
    Li, Zhizhong
    Oellers, Tobias
    Fruchter, Luc
    Ludwig, Alfred
    Mayrhofer, Karl J. J.
    Koper, Marc T. M.
    Cherevko, Serhiy
    [J]. NATURE CATALYSIS, 2018, 1 (07): : 508 - 515