Accessibility of the gravitational-wave background due to binary coalescences to second and third generation gravitational-wave detectors

被引:91
|
作者
Wu, C. [1 ]
Mandic, V. [1 ]
Regimbau, T. [2 ]
机构
[1] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA
[2] CNRS, Observ Cote Azur, Dept Artemis, F-06304 Nice, France
来源
PHYSICAL REVIEW D | 2012年 / 85卷 / 10期
基金
美国国家科学基金会;
关键词
GAMMA-RAY BURSTS; STAR-FORMATION; NEUTRON-STAR; HISTORY; MERGERS; PREDICTIONS; RATES;
D O I
10.1103/PhysRevD.85.104024
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Compact binary coalescences, such as binary neutron stars or black holes, are among the most promising candidate sources for the current and future terrestrial gravitational-wave detectors. While such sources are best searched using matched template techniques and chirp template banks, integrating chirp signals from binaries over the entire universe also leads to a gravitational-wave background (GWB). In this paper we systematically scan the parameter space for the binary coalescence GWB models, taking into account uncertainties in the star formation rate and in the delay time between the formation and coalescence of the binary, and we compare the computed GWB to the expected sensitivities of the second and third generation gravitational-wave detector networks. We find that second generation detectors are likely to detect the binary coalescence GWB, while the third generation detectors will probe most of the available parameter space. The binary coalescence GWB will, in fact, be a foreground for the third generation detectors, potentially masking the GWB background due to cosmological sources. Accessing the cosmological GWB with third generation detectors will therefore require identification and subtraction of all inspiral signals from all binaries in the detectors' frequency band.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Landscape of stellar-mass black-hole spectroscopy with third-generation gravitational-wave detectors
    Bhagwat, Swetha
    Pacilio, Costantino
    Pani, Paolo
    Mapelli, Michela
    PHYSICAL REVIEW D, 2023, 108 (04)
  • [32] Accuracy of inference on the physics of binary evolution from gravitational-wave observations
    Barrett, Jim W.
    Gaebel, Sebastian M.
    Neijssel, Coenraad J.
    Vigna-Gomez, Alejandro
    Stevenson, Simon
    Berry, Christopher P. L.
    Farr, Will M.
    Mandel, Ilya
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 477 (04) : 4685 - 4695
  • [33] Statistical properties of astrophysical gravitational-wave backgrounds
    Meacher, Duncan
    Thrane, Eric
    Regimbau, Tania
    PHYSICAL REVIEW D, 2014, 89 (08):
  • [34] A kilonova as the electromagnetic counterpart to a gravitational-wave source
    Smartt, S. J.
    Chen, T. -W.
    Jerkstrand, A.
    Coughlin, M.
    Kankare, E.
    Sim, S. A.
    Fraser, M.
    Inserra, C.
    Maguire, K.
    Chambers, K. C.
    Huber, M. E.
    Kruhler, T.
    Leloudas, G.
    Magee, M.
    Shingles, L. J.
    Smith, K. W.
    Young, D. R.
    Tonry, J.
    Kotak, R.
    Gal-Yam, A.
    Lyman, J. D.
    Homan, D. S.
    Agliozzo, C.
    Anderson, J. P.
    Angus, C. R.
    Ashall, C.
    Barbarino, C.
    Bauer, F. E.
    Berton, M.
    Botticella, M. T.
    Bulla, M.
    Bulger, J.
    Cannizzaro, G.
    Cano, Z.
    Cartier, R.
    Cikota, A.
    Clark, P.
    De Cia, A.
    Della Valle, M.
    Denneau, L.
    Dennefeld, M.
    Dessart, L.
    Dimitriadis, G.
    Elias-Rosa, N.
    Firth, R. E.
    Flewelling, H.
    Floers, A.
    Franckowiak, A.
    Frohmaier, C.
    Galbany, L.
    NATURE, 2017, 551 (7678) : 75 - +
  • [35] Limits of Astrophysics with Gravitational-Wave Backgrounds
    Callister, Thomas
    Sammut, Letizia
    Qiu, Shi
    Mandel, Ilya
    Thrane, Eric
    PHYSICAL REVIEW X, 2016, 6 (03):
  • [36] Anisotropies in the astrophysical gravitational-wave background: Predictions for the detection of compact binaries by LIGO and Virgo
    Jenkins, Alexander C.
    Sakellariadou, Mairi
    Regimbau, Tania
    Slezak, Eric
    PHYSICAL REVIEW D, 2018, 98 (06)
  • [37] The Gravitational-wave physics II: Progress
    Bian, Ligong
    Cai, Rong-Gen
    Cao, Shuo
    Cao, Zhoujian
    Gao, He
    Guo, Zong-Kuan
    Lee, Kejia
    Li, Di
    Liu, Jing
    Lu, Youjun
    Pi, Shi
    Wang, Jian-Min
    Wang, Shao-Jiang
    Wang, Yan
    Yang, Tao
    Yang, Xing-Yu
    Yu, Shenghua
    Zhang, Xin
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2021, 64 (12)
  • [38] Searching for electromagnetic counterparts to gravitational-wave merger events with the prototype Gravitational-Wave Optical Transient Observer (GOTO-4)
    Gompertz, B. P.
    Cutter, R.
    Steeghs, D.
    Galloway, D. K.
    Lyman, J.
    Ulaczyk, K.
    Dyer, M. J.
    Ackley, K.
    Dhillon, V. S.
    O'Brien, P. T.
    Ramsay, G.
    Poshyachinda, S.
    Kotak, R.
    Nuttall, L.
    Breton, R. P.
    Palle, E.
    Pollacco, D.
    Thrane, E.
    Aukkaravittayapun, S.
    Awiphan, S.
    Brown, M. J., I
    Burhanudin, U.
    Chote, P.
    Chrimes, A. A.
    Daw, E.
    Duffy, C.
    Eyles-Ferris, R. A. J.
    Heikkila, T.
    Irawati, P.
    Kennedy, M. R.
    Killestein, T.
    Levan, A. J.
    Littlefair, S.
    Makrygianni, L.
    Marsh, T.
    Sanchez, D. Mata
    Mattila, S.
    Maund, J.
    McCormac, J.
    Mkrtichian, D.
    Mong, Y-L
    Mullaney, J.
    Muller, B.
    Obradovic, A.
    Rol, E.
    Sawangwit, U.
    Stanway, E. R.
    Starling, R. L. C.
    Strom, P. A.
    Tooke, S.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 497 (01) : 726 - 738
  • [39] Stochastic Gravitational-wave Background from Binary Black Holes and Binary Neutron Stars and Implications for LISA
    Chen, Zu-Cheng
    Huang, Fan
    Huang, Qing-Guo
    ASTROPHYSICAL JOURNAL, 2019, 871 (01)
  • [40] Detection prospects of core-collapse supernovae with supernova-optimized third-generation gravitational-wave detectors
    Srivastava, Varun
    Ballmer, Stefan
    Brown, Duncan A.
    Afle, Chaitan A.
    Burrows, Adam
    Radice, David
    Vartanyan, David
    PHYSICAL REVIEW D, 2019, 100 (04)