For a once-punctured complex torus, we compare the Bergman kernel and the fundamental metric, by constructing explicitly the Evans-Selberg potential and discussing its asymptotic behaviors. This work aims to generalize the Suita type results to potential-theoretically parabolic Riemann surfaces.
机构:
Peking Univ, Beijing Int Ctr Math Res, Beijing 100871, Peoples R China
Peking Univ, Sch Math Sci, Beijing 100871, Peoples R ChinaPeking Univ, Beijing Int Ctr Math Res, Beijing 100871, Peoples R China
Guan, Qi'an
Zhou, Xiangyu
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Math, AMSS, Beijing 100190, Peoples R China
Chinese Acad Sci, Hua Loo Keng Key Lab Math, Beijing 100190, Peoples R ChinaPeking Univ, Beijing Int Ctr Math Res, Beijing 100871, Peoples R China
机构:
Peking Univ, Beijing Int Ctr Math Res, Beijing 100871, Peoples R China
Peking Univ, Sch Math Sci, Beijing 100871, Peoples R ChinaPeking Univ, Beijing Int Ctr Math Res, Beijing 100871, Peoples R China
Guan, Qi'an
Zhou, Xiangyu
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Math, AMSS, Beijing 100190, Peoples R China
Chinese Acad Sci, Hua Loo Keng Key Lab Math, Beijing 100190, Peoples R ChinaPeking Univ, Beijing Int Ctr Math Res, Beijing 100871, Peoples R China