On the Lp-error of adaptive approximation of bivariate functions by ha onic splines

被引:1
|
作者
Babenko, Yuliya [1 ]
Leskevych, Tetiana [2 ]
机构
[1] Kennesaw State Univ, Dept Math & Stat, Kennesaw, GA 30344 USA
[2] Dnepropetrovsk Natl Univ, Dept Math Anal & Theory Funct, UA-49050 Dnepropetrovsk, Ukraine
关键词
interpolation; adaptive; harmonic spline; optimal error; asymptotics; 41A15; 41A60; 68W25; 97N50;
D O I
10.1080/00036811.2013.766323
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Interpolation by various types of splines is the standard procedure in many applications. In this paper we discuss harmonic spline interpolation (on the lines of a grid) as an alternative to polynomial spline interpolation (at vertices of a grid). We will discuss some advantages and drawbacks of this approach and present the asymptotics of the L-p-error for adaptive approximation by harmonic splines.
引用
收藏
页码:171 / 189
页数:19
相关论文
共 2 条
  • [1] On Lp-error of bivariate polynomial interpolation on the square
    Kolomoitsev, Yurii
    Lomako, Tetiana
    Prestin, Juergen
    JOURNAL OF APPROXIMATION THEORY, 2018, 229 : 13 - 35
  • [2] L p error estimates for approximation by Sobolev splines and Wendland functions on a"e d
    Ward, John Paul
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2013, 38 (04) : 873 - 889