A Hierarchical Coarse-Grained (All-Atom-to-All-Residue) Computer Simulation Approach: Self-Assembly of Peptides

被引:7
作者
Pandey, Ras B. [1 ]
Kuang, Zhifeng [2 ]
Farmer, Barry L. [2 ]
机构
[1] Univ So Mississippi, Dept Phys & Astron, Hattiesburg, MS 39406 USA
[2] Air Force Res Lab, Mat & Mfg Directorate, Dayton, OH USA
来源
PLOS ONE | 2013年 / 8卷 / 08期
关键词
POTENTIALS; BINDING; SURFACES; PARAMETERS; PALLADIUM; GOLD;
D O I
10.1371/journal.pone.0070847
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A hierarchical computational approach (all-atom residue to all-residue peptide) is introduced to study self-organizing structures of peptides as a function of temperature. A simulated residue-residue interaction involving all-atom description, analogous to knowledge-based analysis (with different input), is used as an input to a phenomenological coarse-grained interaction for large scales computer simulations. A set of short peptides P1 (H-1 S-2 S-3 Y-4 W-5 Y-6 (7)A F-8 N-9 N-10 K-11 T-12) is considered as an example to illustrate the utility. We find that peptides assemble rather fast into globular aggregates at low temperatures and disperse as random-coil at high temperatures. The specificity of the mass distribution of the self-assembly depends on the temperature and spatial lengths which are identified from the scaling of the structure factor. Analysis of energy and mobility profiles, gyration radius of peptide, and radial distribution function of the assembly provide insight into the multi-scale (intra-and inter-chain) characteristics. Thermal response of the global assembly with the simulated residue-residue interaction is consistent with that of the knowledge-based analysis despite expected quantitative differences.
引用
收藏
页数:8
相关论文
共 34 条
[1]  
Betancourt MR, 1999, PROTEIN SCI, V8, P361
[2]   Chemical Functionalization of Graphene Enabled by Phage Displayed Peptides [J].
Cui, Yue ;
Kim, Sang N. ;
Jones, Sharon E. ;
Wissler, Laurie L. ;
Naik, Rajesh R. ;
McAlpine, Michael C. .
NANO LETTERS, 2010, 10 (11) :4559-4565
[3]   Improved Parameters for the Martini Coarse-Grained Protein Force Field [J].
de Jong, Djurre H. ;
Singh, Gurpreet ;
Bennett, W. F. Drew ;
Arnarez, Clement ;
Wassenaar, Tsjerk A. ;
Schafer, Lars V. ;
Periole, Xavier ;
Tieleman, D. Peter ;
Marrink, Siewert J. .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2013, 9 (01) :687-697
[4]   INTERATOMIC POTENTIALS FROM 1ST-PRINCIPLES CALCULATIONS - THE FORCE-MATCHING METHOD [J].
ERCOLESSI, F ;
ADAMS, JB .
EUROPHYSICS LETTERS, 1994, 26 (08) :583-588
[5]   Protein-Mediated Layer-by-Layer Syntheses of Freestanding Microscale Titania Structures with Biologically Assembled 3-D Morphologies [J].
Fang, Yunnan ;
Wu, Qingzhong ;
Dickerson, Matthew B. ;
Cai, Ye ;
Shian, Samuel ;
Berrigan, John D. ;
Poulsen, Nicole ;
Kroeger, Nils ;
Sandhage, Kenneth H. .
CHEMISTRY OF MATERIALS, 2009, 21 (24) :5704-5710
[6]  
Fritsche M, 2012, PLOS ONE, V7
[7]   Knowledge-based potentials for protein folding: What can we learn from known protein structures? [J].
Godzik, A .
STRUCTURE, 1996, 4 (04) :363-366
[8]   Nature of Molecular Interactions of Peptides with Gold, Palladium, and Pd-Au Bimetal Surfaces in Aqueous Solution [J].
Heinz, Hendrik ;
Farmer, Barry L. ;
Pandey, Ras B. ;
Slocik, Joseph M. ;
Patnaik, Soumya S. ;
Pachter, Ruth ;
Naik, Rajesh R. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (28) :9704-9714
[9]   Elastic and Conformational Softness of a Globular Protein [J].
Hong, Liang ;
Glass, Dennis C. ;
Nickels, Jonathan D. ;
Perticaroli, Stefania ;
Yi, Zheng ;
Madhusudan, Tyagi ;
O'Neill, Hugh ;
Zhang, Qiu ;
Sokolov, Alexei P. ;
Smith, Jeremy C. .
PHYSICAL REVIEW LETTERS, 2013, 110 (02)
[10]   Statistical mechanics-based method to extract atomic distance-dependent potentials from protein structures [J].
Huang, Sheng-You ;
Zou, Xiaoqin .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2011, 79 (09) :2648-2661