Zero-dimensional spaces from linear structures

被引:1
作者
Vaughan, JE [1 ]
机构
[1] Univ N Carolina, Dept Math Sci, Greensboro, NC 27402 USA
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2001年 / 12卷 / 04期
关键词
linearly stratifiable spaces; omega(mu)-metrizable spaces; omega(mu)-Nagata spaces; omega(mu)-additive; character; pseudocharacter; ortho-base; non-Archimedean space; ultraparacompact; Cartesian products; box products;
D O I
10.1016/S0019-3577(01)80043-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is well known that spaces defined from a separated uniform structure with a linearly ordered base of uncountable cofinality (omega(mu)-metrizable spaces) are ultraparacompact and have an ortho-base, hence are non-Archimedean spaces in the sense of A, Monna, Our results concern whether certain wider classes of spaces defined from linear structures retain these properties. We construct for every regular cardinal omega(mu) examples of omega(mu)-additive, omega(mu)-stratifiable spaces (i.e.omega(mu)-Nagata spaces) that do not have an ortho-base. We give a number of examples of linearly stratifiable spaces, one of which is related to an example of Eric K. van Douwen concerning countable box products of stratifiable spaces.
引用
收藏
页码:585 / 596
页数:12
相关论文
共 23 条