THE FIBONACCI MODEL AND THE TEMPERLEY-LIEB ALGEBRA

被引:18
作者
Kauffman, Louis H. [1 ]
Lomonaco, Samuel J., Jr. [2 ]
机构
[1] Univ Illinois, Dept Math Stat & Comp Sci MC 249, Chicago, IL 60607 USA
[2] Univ Maryland Baltimore Cty, Dept Comp Sci & Elect Engn, Baltimore, MD 21250 USA
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS B | 2008年 / 22卷 / 29期
关键词
Knots; links; braids; quantum computing; unitary transformation; Jones polynomial; Temperley-Lieb algebra;
D O I
10.1142/S0217979208049303
中图分类号
O59 [应用物理学];
学科分类号
摘要
We give an elementary construction of the Fibonacci model, a unitary braid group representation that is universal for quantum computation. This paper is dedicated to Professor C. N. Yang, on his 85th birthday.
引用
收藏
页码:5065 / 5080
页数:16
相关论文
共 20 条
[11]  
KAUFFMAN LH, 2007, P SPIE, V6573, P43004
[12]  
KAUFFMAN LH, 2007, P SPIE
[13]   q-deformed spin networks, knot polynomials and anyonic topological quantum computation [J].
Kauffman, Louis H. ;
Lomonaco, Samuel J., Jr. .
JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2007, 16 (03) :267-332
[14]  
Kitaev A. Yu., 2005, ARXIVCONDMAT0506438V
[15]   Spin network quantum simulator [J].
Marzuoli, A ;
Rasetti, M .
PHYSICS LETTERS A, 2002, 306 (2-3) :79-87
[16]   NONABELIONS IN THE FRACTIONAL QUANTUM HALL-EFFECT [J].
MOORE, G ;
READ, N .
NUCLEAR PHYSICS B, 1991, 360 (2-3) :362-396
[17]  
Preskill J., QUANTUM COMPUTATION
[18]  
SHOR PW, 2007, ARXIV07072831V1QUANT
[19]  
Wilczek F., 1990, FRACTIONAL STAT ANYO, DOI [10.1142/0961, DOI 10.1142/0961]
[20]   QUANTUM-FIELD THEORY AND THE JONES POLYNOMIAL [J].
WITTEN, E .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 121 (03) :351-399