THE FIBONACCI MODEL AND THE TEMPERLEY-LIEB ALGEBRA

被引:18
作者
Kauffman, Louis H. [1 ]
Lomonaco, Samuel J., Jr. [2 ]
机构
[1] Univ Illinois, Dept Math Stat & Comp Sci MC 249, Chicago, IL 60607 USA
[2] Univ Maryland Baltimore Cty, Dept Comp Sci & Elect Engn, Baltimore, MD 21250 USA
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS B | 2008年 / 22卷 / 29期
关键词
Knots; links; braids; quantum computing; unitary transformation; Jones polynomial; Temperley-Lieb algebra;
D O I
10.1142/S0217979208049303
中图分类号
O59 [应用物理学];
学科分类号
摘要
We give an elementary construction of the Fibonacci model, a unitary braid group representation that is universal for quantum computation. This paper is dedicated to Professor C. N. Yang, on his 85th birthday.
引用
收藏
页码:5065 / 5080
页数:16
相关论文
共 20 条
[1]  
AHARONOV D, QUANTPH0511096
[2]  
FREEDMAN M, QUANTPH0001108V2
[3]  
FREEDMAN M, 2001, QUANTPH0110060V1
[4]  
FREEDMAN M, 1998, DOCUMENTA MATH, P453
[5]   Simulation of topological field theories by quantum computers [J].
Freedman, MH ;
Kiataev, A ;
Wang, ZH .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2002, 227 (03) :587-603
[6]  
FREEDMAN MH, QUANTPH0003128
[7]   A POLYNOMIAL INVARIANT FOR KNOTS VIA VONNEUMANN-ALGEBRAS [J].
JONES, VFR .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 12 (01) :103-111
[8]  
Kauffman L., 2002, QUANTUM COMPUTATION, V305, P101
[9]  
KAUFFMAN LH, 1987, TOPOLOGY, V26, P395
[10]  
KAUFFMAN LH, 2006, P SPIE, V6244