Medicago truncatula increases its iron-uptake mechanisms in response to volatile organic compounds produced by Sinorhizobium meliloti

被引:42
作者
del Carmen Orozco-Mosqueda, Ma [1 ]
Macias-Rodriguez, Lourdes I. [1 ]
Santoyo, Gustavo [1 ]
Farias-Rodriguez, Rodolfo [1 ]
Valencia-Cantero, Eduardo [1 ]
机构
[1] Univ Michoacana, Inst Invest Quim Biol, Morelia 58030, Michoacan, Mexico
关键词
PLANT-GROWTH; DEFICIENCY; NODULATION; ARABIDOPSIS; ACQUISITION; INFECTION; MODEL;
D O I
10.1007/s12223-013-0243-9
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Medicago truncatula represents a model plant species for understanding legume-bacteria interactions. M. truncatula roots form a specific root-nodule symbiosis with the nitrogen-fixing bacterium Sinorhizobium meliloti. Symbiotic nitrogen fixation generates high iron (Fe) demands for bacterial nitrogenase holoenzyme and plant leghemoglobin proteins. Leguminous plants acquire Fe via "Strategy I," which includes mechanisms such as rhizosphere acidification and enhanced ferric reductase activity. In the present work, we analyzed the effect of S. meliloti volatile organic compounds (VOCs) on the Fe-uptake mechanisms of M. truncatula seedlings under Fe-deficient and Fe-rich conditions. Axenic cultures showed that both plant and bacterium modified VOC synthesis in the presence of the respective symbiotic partner. Importantly, in both Fe-rich and -deficient experiments, bacterial VOCs increased the generation of plant biomass, rhizosphere acidification, ferric reductase activity, and chlorophyll content in plants. On the basis of our results, we propose that M. truncatula perceives its symbiont through VOC emissions, and in response, increases Fe-uptake mechanisms to facilitate symbiosis.
引用
收藏
页码:579 / 585
页数:7
相关论文
共 30 条
[11]   Plant growth-promoting rhizobacteria modulate root-system architecture in Arabidopsis thaliana through volatile organic compound emission [J].
Gutierrez-Luna, Francisca M. ;
Lopez-Bucio, Jose ;
Altamirano-Hernandez, Josue ;
Valencia-Cantero, Eduardo ;
de la Cruz, Homero Reyes ;
Macias-Rodriguez, Lourdes .
SYMBIOSIS, 2010, 51 (01) :75-83
[12]   The structure and function of plant hemoglobins [J].
Hoy, Julie A. ;
Hargrove, Mark S. .
PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2008, 46 (03) :371-379
[13]   Iron uptake mechanisms in plants: Functions of the FRO family of ferric reductases [J].
Jeong, Jeeyon ;
Connolly, Erin L. .
PLANT SCIENCE, 2009, 176 (06) :709-714
[14]   How rhizobial symbionts invade plants:: the Sinorhizobium-Medicago model [J].
Jones, Kathryn M. ;
Kobayashi, Hajime ;
Davies, Bryan W. ;
Taga, Michiko E. ;
Walker, Graham C. .
NATURE REVIEWS MICROBIOLOGY, 2007, 5 (08) :619-633
[15]   Volatiles of bacterial antagonists inhibit mycelial growth of the plant pathogen Rhizoctonia solani [J].
Kai, Marco ;
Effmert, Uta ;
Berg, Gabriele ;
Piechulla, Birgit .
ARCHIVES OF MICROBIOLOGY, 2007, 187 (05) :351-360
[16]  
Knudsen JT, 2006, BOT REV, V72, P1, DOI 10.1663/0006-8101(2006)72[1:DADOFS]2.0.CO
[17]  
2
[18]   THE CHEMISTRY OF IRON IN SOILS AND ITS AVAILABILITY TO PLANTS [J].
LINDSAY, WL ;
SCHWAB, AP .
JOURNAL OF PLANT NUTRITION, 1982, 5 (4-7) :821-840
[19]   The central role of microbial activity for iron acquisition in maize and sunflower [J].
Masalha, J ;
Kosegarten, H ;
Elmaci, Ö ;
Mengel, K .
BIOLOGY AND FERTILITY OF SOILS, 2000, 30 (5-6) :433-439
[20]   Transkingdom signaling based on bacterial cyclodipeptides with auxin activity in plants [J].
Ortiz-Castro, Randy ;
Diaz-Perez, Cesar ;
Martinez-Trujillo, Miguel ;
del Rio, Rosa E. ;
Campos-Garcia, Jesus ;
Lopez-Bucio, Jose .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (17) :7253-7258