Nonlinear Stage of Modulation Instability

被引:233
作者
Zakharov, V. E. [1 ,2 ,3 ]
Gelash, A. A. [2 ]
机构
[1] Univ Arizona, Tucson, AZ 85721 USA
[2] Novosibirsk State Univ, Novosibirsk 630090, Russia
[3] Russian Acad Sci, PN Lebedev Phys Inst, Moscow 119991, Russia
关键词
SCHRODINGER-EQUATION; PEREGRINE SOLITON; WAVE SOLUTIONS; WATER; FIBER;
D O I
10.1103/PhysRevLett.111.054101
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the nonlinear stage of the modulation instability of a condensate in the framework of the focusing nonlinear Schrodinger equation (NLSE). We find a general N-solitonic solution of the focusing NLSE in the presence of a condensate by using the dressing method. We separate a special designated class of "regular solitonic solutions'' that do not disturb phases of the condensate at infinity by coordinate. All regular solitonic solutions can be treated as localized perturbations of the condensate. We find an important class of "superregular solitonic solutions'' which are small perturbations at a certain moment of time. They describe the nonlinear stage of the modulation instability of the condensate.
引用
收藏
页数:5
相关论文
共 25 条
[1]  
Agafontsev D., ARXIV12025763
[2]   How to excite a rogue wave [J].
Akhmediev, N. ;
Soto-Crespo, J. M. ;
Ankiewicz, A. .
PHYSICAL REVIEW A, 2009, 80 (04)
[3]   Rogue waves and rational solutions of the nonlinear Schroumldinger equation [J].
Akhmediev, Nail ;
Ankiewicz, Adrian ;
Soto-Crespo, J. M. .
PHYSICAL REVIEW E, 2009, 80 (02)
[4]  
AKHMEDIEV NN, 1985, ZH EKSP TEOR FIZ+, V89, P1542
[5]  
[Anonymous], 2005, LECT NOTES PHYS, DOI DOI 10.1007/B11728
[6]   Rogue Wave Observation in a Water Wave Tank [J].
Chabchoub, A. ;
Hoffmann, N. P. ;
Akhmediev, N. .
PHYSICAL REVIEW LETTERS, 2011, 106 (20)
[7]   On multi-rogue wave solutions of the NLS equation and positon solutions of the KdV equation [J].
Dubard, P. ;
Gaillard, P. ;
Klein, C. ;
Matveev, V. B. .
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2010, 185 (01) :247-258
[8]   EXACT INTEGRATION OF NONLINEAR SCHRODINGER-EQUATION [J].
ITS, AR ;
RYBIN, AV ;
SALL, MA .
THEORETICAL AND MATHEMATICAL PHYSICS, 1988, 74 (01) :20-32
[9]   INVERSE SCATTERING METHOD FOR NON-LINEAR EVOLUTION EQUATIONS UNDER NONVANISHING CONDITIONS [J].
KAWATA, T ;
INOUE, H .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1978, 44 (05) :1722-1729
[10]   The Peregrine soliton in nonlinear fibre optics [J].
Kibler, B. ;
Fatome, J. ;
Finot, C. ;
Millot, G. ;
Dias, F. ;
Genty, G. ;
Akhmediev, N. ;
Dudley, J. M. .
NATURE PHYSICS, 2010, 6 (10) :790-795