The synchronization method for fractional-order hyperchaotic systems

被引:16
作者
Feng, Dali [1 ]
An, Hongli [1 ]
Zhu, Haixing [2 ]
Zhao, Yunfeng [1 ]
机构
[1] Nanjing Agr Univ, Coll Sci, Nanjing 210095, Jiangsu, Peoples R China
[2] Nanjing Forestry Univ, Coll Econ & Management, Nanjing 210037, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Chaos synchronization; Fractional-order hyperchaotic system; Function cascade synchronization scheme; Stability theorem; FUNCTION PROJECTIVE SYNCHRONIZATION; GENERALIZED SYNCHRONIZATION; CHAOS SYNCHRONIZATION; LAG SYNCHRONIZATION; ROSSLER;
D O I
10.1016/j.physleta.2019.01.056
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, a function cascade synchronization method for fractional-order hyperchaotic systems is introduced to achieve the synchronization of two identical fractional-order hyperchaotic systems. It is shown that the method is not only theoretically rigorous, practically feasible, but also a more general one, which contains the complete synchronization, modified projective synchronization and anti-phase synchronization. In order to valid the effectiveness of the proposed method, we give two illustrative examples. Suitable controllers are designed and the function cascade synchronization for fractional order hyperchaotic systems is achieved. Numerical simulations are performed and shown to fit with our analysis results. (C) 2019 Published by Elsevier B.V.
引用
收藏
页码:1427 / 1434
页数:8
相关论文
共 40 条
[1]   Synchronization of Rossler and Chen chaotic dynamical systems using active control [J].
Agiza, HN ;
Yassen, MT .
PHYSICS LETTERS A, 2001, 278 (04) :191-197
[2]   The function cascade synchronization method and applications [J].
An, Hongli ;
Chen, Yong .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2008, 13 (10) :2246-2255
[3]  
[Anonymous], 2001, APPL FRACTIONAL CALC
[4]   CASCADING SYNCHRONIZED CHAOTIC SYSTEMS [J].
CARROLL, TL ;
PECORA, LM .
PHYSICA D, 1993, 67 (1-3) :126-140
[5]  
Chen Y, 2003, APPL MATH MECH-ENGL, V24, P256
[6]   The function cascade synchronization approach with uncertain parameters or not for hyperchaotic systems [J].
Chen, Yong ;
An, Hongli ;
Li, Zhibin .
APPLIED MATHEMATICS AND COMPUTATION, 2008, 197 (01) :96-110
[7]   Function projective synchronization between two identical chaotic systems [J].
Chen, Yong ;
Li, Xin .
INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2007, 18 (05) :883-888
[8]  
Deng WH, 2007, NONLINEAR DYNAM, V48, P409, DOI [10.1007/s11071-006-9094-0, 10.1007/s11071 -006-9094-0]
[9]   Chaos synchronization of the fractional Lu system [J].
Deng, WH ;
Li, CP .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2005, 353 (1-4) :61-72
[10]   A predictor-corrector approach for the numerical solution of fractional differential equations [J].
Diethelm, K ;
Ford, NJ ;
Freed, AD .
NONLINEAR DYNAMICS, 2002, 29 (1-4) :3-22