Optimal slow pyrolysis of apple pomace reaction conditions for the generation of a feedstock gas for hydrogen production

被引:28
作者
Baray Guerrero, M. R. [1 ]
Salinas Gutierrez, J. M. [1 ]
Melendez Zaragoza, M. J. [1 ]
Lopez Ortiz, A. [1 ]
Collins-Martinez, V. [1 ]
机构
[1] Ctr Invest Mat Avanzados SC, Dept Ingn & Quim Mat, Miguel de Cervantes 120, Chihuahua 31136, Chih, Mexico
关键词
Pyrolysis; Apple pomace; Hydrogen production; CO2; capture; SUGAR-CANE BAGASSE; VACUUM PYROLYSIS; BIOMASS; GASIFICATION; KINETICS; CAPTURE; ENERGY; YIELD;
D O I
10.1016/j.ijhydene.2016.10.066
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This research explores optimal reaction conditions for the generation of gas products, through the slow pyrolysis of apple pomace, to be used as a feedstock for the production of H-2 by the absorption enhanced reforming of methane (AER). Pyrolysis was performed at 300-450 degrees C and heating rates 5-20 degrees C/min. Gases, tars and chars were quantified at different heating rates and isothermal conditions. Results indicate that at 400 degrees C a maximum of 71.5% W of non-condensable volatile matter (NCVM) can be obtained along with 25.4% W of condensable volatile matter (CVM), while only 3% W of residual matter (RM). At these conditions (NCVM) a gas composition of 49.8% CO, 26.8% CO2 and 23.4% CH4 (Vol) was generated. A thermodynamic analysis of this product gas was performed under AER through CO2 absorption by CaO. Calculations using a steam to methane ratio of 3.5 and 3.5 mol of CaO/mol of CH4 indicate that a maximum H-2 production is achieved at 715 degrees C containing 73.0% H-2, 19.1% CO, 5.3% CO2 and 2.5% CH4 with no carbon formation. (C) 2016 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:23232 / 23237
页数:6
相关论文
共 29 条
[11]  
Garcia L, APPL CATAL A
[12]   Vacuum pyrolysis of sugarcane bagasse [J].
Garcìa-Pèrez, M ;
Chaala, A ;
Roy, C .
JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2002, 65 (02) :111-136
[13]   Sorption-enhanced reaction process for hydrogen production [J].
Hufton, JR ;
Mayorga, S ;
Sircar, S .
AICHE JOURNAL, 1999, 45 (02) :248-256
[14]  
I. D. A. E. Instituto para la Diversificacion y el Ahorro de Energia, BIOM
[15]   Low temperature sugar cane bagasse pyrolysis for the production of high purity hydrogen through steam reforming and CO2 capture [J].
Lopez Ortiz, A. ;
Neri Segura, F. J. ;
Sandoval Jabalera, R. ;
Marques da Silva Paula, M. ;
Arias del Campo, E. ;
Salinas Gutierrez, J. ;
Escobedo Bretado, M. A. ;
Collins-Martinez, V. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (28) :12580-12588
[16]   THE COMBUSTION CHARACTERISTICS OF CHAR FROM PULVERIZED BAGASSE [J].
LUO, MC ;
STANMORE, B .
FUEL, 1992, 71 (09) :1074-1076
[17]   Low temperature conversion of some Brazilian municipal and industrial sludges [J].
Lutz, H ;
Romeiro, GA ;
Damasceno, RN ;
Kutubuddin, M ;
Bayer, E .
BIORESOURCE TECHNOLOGY, 2000, 74 (02) :103-107
[18]   Techno-economic assessment of hydrogen production processes for the hydrogen economy for the short and medium term [J].
Mueller-Langer, F. ;
Tzimas, E. ;
Kaltschmitt, M. ;
Peteves, S. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2007, 32 (16) :3797-3810
[19]   Thermal analysis and devolatilization kinetics of cotton stalk, sugar cane bagasse and shea meal under nitrogen and air atmospheres [J].
Munir, S. ;
Daood, S. S. ;
Nimmo, W. ;
Cunliffe, A. M. ;
Gibbs, B. M. .
BIORESOURCE TECHNOLOGY, 2009, 100 (03) :1413-1418
[20]   Pyrolysis of olive residue and sugar cane bagasse: Non-isothermal thermogravimetric kinetic analysis [J].
Ounas, A. ;
Aboulkas, A. ;
El Harfi, K. ;
Bacaoui, A. ;
Yaacoubi, A. .
BIORESOURCE TECHNOLOGY, 2011, 102 (24) :11234-11238