Tunable bandgap in BiFeO3 nanoparticles: The role of microstrain and oxygen defects

被引:255
作者
Mocherla, Pavana S. V. [1 ]
Karthik, C. [2 ]
Ubic, R. [2 ]
Rao, M. S. Ramachandra [3 ,4 ]
Sudakar, C. [1 ]
机构
[1] Indian Inst Technol, Dept Phys, Multifunct Mat Lab, Madras 600036, Tamil Nadu, India
[2] Boise State Univ, Dept Mat Sci & Engn, Boise, ID 83725 USA
[3] Indian Inst Technol, Dept Phys, Madras 600036, Tamil Nadu, India
[4] Indian Inst Technol, Nano Funct Mat Technol Ctr, Madras 600036, Tamil Nadu, India
关键词
MICROCRYSTALS; TEMPERATURE; STATES; FILMS;
D O I
10.1063/1.4813539
中图分类号
O59 [应用物理学];
学科分类号
摘要
We demonstrate a tunable bandgap from 2.32 eV to 2.09 eV in phase-pure BiFeO3 by controlling the particle size from 65 nm to 5 nm. Defect states due to oxygen and microstrain show a strong dependence on BiFeO3 particle size and have a significant effect on the shape of absorbance curves. Oxygen-defect induced microstrain and undercoordinated oxygen on the surface of BiFeO3 nanoparticles are demonstrated via HRTEM and XPS studies. Microstrain in the lattice leads to the reduction in rhombohedral distortion of BiFeO3 for particle sizes below 30 nm. The decrease in band gap with decreasing particle size is attributed to the competing effects of microstrain, oxygen defects, and Coulombic interactions. (C) 2013 AIP Publishing LLC.
引用
收藏
页数:5
相关论文
共 38 条
  • [31] Size-dependent properties of multiferroic BiFeO3 nanoparticles
    Selbach, Sverre M.
    Tybell, Thomas
    Einarsrud, Mari-Ann
    Grande, Tor
    [J]. CHEMISTRY OF MATERIALS, 2007, 19 (26) : 6478 - 6484
  • [32] Tuning the optical and electronic properties of colloidal nanocrystals by lattice strain
    Smith, Andrew M.
    Mohs, Aaron M.
    Nie, Shuming
    [J]. NATURE NANOTECHNOLOGY, 2009, 4 (01) : 56 - 63
  • [33] Controllable Microwave Hydrothermal Synthesis of Bismuth Ferrites and Photocatalytic Characterization
    Tan, Guo-Qiang
    Zheng, Yu-Qin
    Miao, Hong-Yan
    Xia, Ao
    Ren, Hui-Jun
    [J]. JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2012, 95 (01) : 280 - 289
  • [34] Synthesis of BiFeO3 nanoparticles by a low-heating temperature solid-state precursor method
    Wang, Lei
    Xu, Jin-Bao
    Gao, Bo
    Chang, Ai-Min
    Chen, Jing
    Bian, Liang
    Song, Chun-Yan
    [J]. MATERIALS RESEARCH BULLETIN, 2013, 48 (02) : 383 - 388
  • [35] Photocatalytic properties of BiFeO3 nanoparticles with different sizes
    Xian, T.
    Yang, H.
    Dai, J. F.
    Wei, Z. Q.
    Ma, J. Y.
    Feng, W. F.
    [J]. MATERIALS LETTERS, 2011, 65 (11) : 1573 - 1575
  • [36] Yang SY, 2010, NAT NANOTECHNOL, V5, P143, DOI [10.1038/NNANO.2009.451, 10.1038/nnano.2009.451]
  • [37] Photovoltaic effects in BiFeO3
    Yang, S. Y.
    Martin, L. W.
    Byrnes, S. J.
    Conry, T. E.
    Basu, S. R.
    Paran, D.
    Reichertz, L.
    Ihlefeld, J.
    Adamo, C.
    Melville, A.
    Chu, Y. -H.
    Yang, C. -H.
    Musfeldt, J. L.
    Schlom, D. G.
    Ager, J. W., III
    Ramesh, R.
    [J]. APPLIED PHYSICS LETTERS, 2009, 95 (06)
  • [38] Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature
    Zhao, T.
    Scholl, A.
    Zavaliche, F.
    Lee, K.
    Barry, M.
    Doran, A.
    Cruz, M. P.
    Chu, Y. H.
    Ederer, C.
    Spaldin, N. A.
    Das, R. R.
    Kim, D. M.
    Baek, S. H.
    Eom, C. B.
    Ramesh, R.
    [J]. NATURE MATERIALS, 2006, 5 (10) : 823 - 829