Recent approaches to reduce aging phenomena in oxygen- and nitrogen-containing plasma polymer films: An overview

被引:71
作者
Vandenbossche, M. [1 ]
Hegemann, D. [1 ]
机构
[1] Empa, Swiss Fed Labs Mat Sci & Technol, Plasma & Coating Grp, Lerchenfeldstr 5, CH-9014 St Gallen, Switzerland
基金
瑞士国家科学基金会;
关键词
Plasma polymer films; Aging; Hydrolysis reaction; Gradient structure; CHEMICAL-CHARACTERIZATION; DEPOSITION CONDITIONS; HYDROPHOBIC RECOVERY; FUNCTIONAL-GROUPS; ION-IMPLANTATION; STABILITY; SURFACES; GROWTH; RICH; GENERATION;
D O I
10.1016/j.cossms.2018.01.001
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Plasma polymer films (PPFs) are well-known for their enhanced stability compared to conventional polymer coatings. However, PPFs tend to undergo aging in air or in aqueous environments due to oxidation, hydrophobic recovery, hydrolysis and dissolution of oligomeric fragments. Such aging mechanisms cause modifications of the PPFs that entail a change in surface properties. For example, PPF surfaces which are probed for protein adsorption or cell adhesion might therefore be substantially different from the initial PPF. It becomes thus necessary to understand the chemical reactions involved in the chemical modification (and/or degradation) of PPFs. Here, a summary of the most important aging mechanisms occurring in PPFs is given. More precisely, chemical reactions that can potentially occur in oxygen- and nitrogen containing plasma polymer films when stored in air and in water were highlighted. On the basis of this understanding, recent strategies to reduce or delay aging mechanisms and/or to provide time-controlled degradable PPFs are discussed: the enhancement of the degree of cross-linking, the formation of a gradient structure in the PPF during plasma deposition, and the chemical post-plasma treatment to reduce the number of reactive sites. Finally, potential applications of such coatings will be considered. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:26 / 38
页数:13
相关论文
共 91 条
[1]   The 2017 Plasma Roadmap: Low temperature plasma science and technology [J].
Adamovich, I. ;
Baalrud, S. D. ;
Bogaerts, A. ;
Bruggeman, P. J. ;
Cappelli, M. ;
Colombo, V. ;
Czarnetzki, U. ;
Ebert, U. ;
Eden, J. G. ;
Favia, P. ;
Graves, D. B. ;
Hamaguchi, S. ;
Hieftje, G. ;
Hori, M. ;
Kaganovich, I. D. ;
Kortshagen, U. ;
Kushner, M. J. ;
Mason, N. J. ;
Mazouffre, S. ;
Thagard, S. Mededovic ;
Metelmann, H-R ;
Mizuno, A. ;
Moreau, E. ;
Murphy, A. B. ;
Niemira, B. A. ;
Oehrlein, G. S. ;
Petrovic, Z. Lj ;
Pitchford, L. C. ;
Pu, Y-K ;
Rauf, S. ;
Sakai, O. ;
Samukawa, S. ;
Starikovskaia, S. ;
Tennyson, J. ;
Terashima, K. ;
Turner, M. M. ;
van de Sanden, M. C. M. ;
Vardelle, A. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2017, 50 (32)
[2]   Stability of Ultrathin Nanocomposite Polymer Films Controlled by the Embedding of Gold Nanoparticles [J].
Amarandei, George ;
Clancy, Ian ;
O'Dwyer, Colm ;
Arshak, Arousian ;
Corcoran, David .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (23) :20758-20767
[3]   Tuning the Surface Properties of Oxygen-Rich and Nitrogen-Rich Plasma Polymers: Functional Groups and Surface Charge [J].
Babaei, Sara ;
Girard-Lauriault, Pierre-Luc .
PLASMA CHEMISTRY AND PLASMA PROCESSING, 2016, 36 (02) :651-666
[4]   Singularities in hydrophobic recovery of plasma treated polydimethylsiloxane surfaces under non-contaminant atmosphere [J].
Bacharouche, Jalal ;
Haidara, Hamidou ;
Kunemann, Philippe ;
Vallat, Marie-France ;
Roucoules, Vincent .
SENSORS AND ACTUATORS A-PHYSICAL, 2013, 197 :25-29
[5]   Nanofilms Produced by Magnetron Enhanced Plasma Polymerization from Methane and Oxygen for Coating of Rigid Contact Lenses [J].
Bergmann, Michael ;
Ledernez, Loic ;
Dame, Gregory ;
Lickert, Sebastian ;
Widmer, Frank ;
Gier, Yvonne ;
Urban, Gerald .
PLASMA PROCESSES AND POLYMERS, 2013, 10 (11) :970-977
[6]   Nano thick poly(ε-caprolactone)-poly(ethylene glycol) coatings developed by catalyst-free plasma assisted copolymerization process for biomedical applications [J].
Bhatt, Sudhir ;
Pulpytel, Jerome ;
Mirshahi, Massoud ;
Arefi-Khonsari, Farzaneh .
RSC ADVANCES, 2012, 2 (24) :9114-9123
[7]  
Biederman H., 2004, PLASMA POLYM FILMS, P13
[8]   Biofunctionalization of surfaces by energetic ion implantation: Review of progress on applications in implantable biomedical devices and antibody microarrays [J].
Bilek, Marcela M. M. .
APPLIED SURFACE SCIENCE, 2014, 310 :3-10
[9]   Response of Plasma-Polymerized Hexamethyldisiloxane Films to Aqueous Environments [J].
Blanchard, Noemi E. ;
Naik, Vikrant V. ;
Geue, Thomas ;
Kahle, Olaf ;
Hegemann, Dirk ;
Heuberger, Manfred .
LANGMUIR, 2015, 31 (47) :12944-12953
[10]   Characterization and comparison of N-, O-, and N plus O-functionalized polymer surfaces for efficient (HUVEC) endothelial cell colonization [J].
Boespflug, Gael ;
Maire, Marion ;
De Crescenzo, Gregory ;
Lerouge, Sophie ;
Wertheimer, Michael R. .
PLASMA PROCESSES AND POLYMERS, 2017, 14 (07)