An RNA Profile Identifies Two Subsets of Multiple Sclerosis Patients Differing in Disease Activity

被引:48
作者
Ottoboni, Linda [1 ,2 ,3 ]
Keenan, Brendan T. [1 ,3 ]
Tamayo, Pablo [4 ]
Kuchroo, Manik [1 ]
Mesirov, Jill P. [4 ]
Buckle, Guy J. [2 ,5 ,6 ]
Khoury, Samia J. [2 ,5 ,6 ]
Hafler, David A. [3 ,7 ]
Weiner, Howard L. [2 ,5 ,6 ]
De Jager, Philip L. [1 ,2 ,3 ,5 ,6 ]
机构
[1] Brigham & Womens Hosp, Dept Neurol, Inst Neurosci, Program Translat Neuropsychiat Genom, Boston, MA 02115 USA
[2] Harvard Univ, Sch Med, Boston, MA 02115 USA
[3] Broad Inst, Program Med & Populat Genet, Cambridge, MA 02139 USA
[4] Broad Inst, Computat Biol & Bioinformat Program, Cambridge, MA 02139 USA
[5] Brigham & Womens Hosp, Dept Neurol, Partners Multiple Sclerosis Ctr, Boston, MA 02115 USA
[6] Brigham & Womens Hosp, Dept Neurol, Ctr Neurol Dis, Boston, MA 02115 USA
[7] Yale Univ, Sch Med, Dept Neurol, New Haven, CT 06520 USA
关键词
PLACEBO-CONTROLLED TRIAL; INTERFERON-BETA; MODEL; MRI;
D O I
10.1126/scitranslmed.3004186
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The multiple sclerosis (MS) patient population is highly heterogeneous in terms of disease course and treatment response. We used a transcriptional profile generated from peripheral blood mononuclear cells to define the structure of an MS patient population. Two subsets of MS subjects (MSA and MSB) were found among 141 untreated subjects. We replicated this structure in two additional groups of MS subjects treated with one of the two first-line disease-modifying treatments in MS: glatiramer acetate (GA) (n = 94) and interferon-beta (IFN-beta) (n = 128). One of the two subsets of subjects (MSA) was distinguished by higher expression of molecules involved in lymphocyte signaling pathways. Further, subjects in this MSA subset were more likely to have a new inflammatory event while on treatment with either GA or IFN-beta (P = 0.0077). We thus report a transcriptional signature that differentiates subjects with MS into two classes with different levels of disease activity.
引用
收藏
页数:7
相关论文
共 26 条
[1]   Transcription-based prediction of response to IFNβ using supervised computational methods [J].
Baranzini, SE ;
Mousavi, P ;
Rio, J ;
Caillier, SJ ;
Stillman, A ;
Villoslada, P ;
Wyatt, MM ;
Comabella, M ;
Greller, LD ;
Somogyi, R ;
Montalban, X ;
Oksenberg, JR .
PLOS BIOLOGY, 2005, 3 (01) :166-176
[2]   Multisequence MRI in clinically isolated syndromes and the early development of MS [J].
Brex, PA ;
O'Riordan, JI ;
Miszkiel, KA ;
Moseley, IF ;
Thompson, AJ ;
Plant, GT ;
Miller, DH .
NEUROLOGY, 1999, 53 (06) :1184-1190
[3]   Metagenes and molecular pattern discovery using matrix factorization [J].
Brunet, JP ;
Tamayo, P ;
Golub, TR ;
Mesirov, JP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (12) :4164-4169
[4]   A type I interferon signature in monocytes is associated with poor response to interferon-β in multiple sclerosis [J].
Comabella, M. ;
Luenemann, J. D. ;
Rio, J. ;
Sanchez, A. ;
Lopez, C. ;
Julia, E. ;
Fernandez, M. ;
Nonell, L. ;
Camina-Tato, M. ;
Deisenhammer, F. ;
Caballero, E. ;
Tortola, M. T. ;
Prinz, M. ;
Montalban, X. ;
Martin, R. .
BRAIN, 2009, 132 :3353-3365
[5]   Abrogation of T cell quiescence characterizes patients at high risk for multiple sclerosis after the initial neurological event [J].
Corvol, Jean-Christophe ;
Pelletier, Daniel ;
Henry, Roland G. ;
Caillier, Stacy J. ;
Wang, Joanne ;
Pappas, Derek ;
Casazza, Simona ;
Okuda, Darin T. ;
Hauser, Stephen L. ;
Oksenberg, Jorge R. ;
Baranzini, Sergio E. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (33) :11839-11844
[6]   Integration of genetic risk factors into a clinical algorithm for multiple sclerosis susceptibility: a weighted genetic risk score [J].
De Jager, Philip L. ;
Chibnik, Lori B. ;
Cui, Jing ;
Reischl, Joachim ;
Lehr, Stephan ;
Simon, K. Claire ;
Aubin, Cristin ;
Bauer, David ;
Heubach, Juergen F. ;
Sandbrink, Rupert ;
Tyblova, Michaela ;
Lelkova, Petra ;
Havrdova, Eva ;
Pohl, Christoph ;
Horakova, Dana ;
Ascherio, Alberto ;
Hafler, David A. ;
Karlson, Elizabeth W. .
LANCET NEUROLOGY, 2009, 8 (12) :1111-1119
[7]   Regularization networks and support vector machines [J].
Evgeniou, T ;
Pontil, M ;
Poggio, T .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2000, 13 (01) :1-50
[8]   Model-based clustering, discriminant analysis, and density estimation [J].
Fraley, C ;
Raftery, AE .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2002, 97 (458) :611-631
[9]  
Fraley C., 2006, 504 DEP STAT
[10]   A model for the comprehensive investigation of a chronic autoimmune disease: The multiple sclerosis CLIMB study [J].
Gauthier, Susan A. ;
Glanz, Bonnie I. ;
Mandel, Micha ;
Weiner, Howard L. .
AUTOIMMUNITY REVIEWS, 2006, 5 (08) :532-536