A generalized Fokker-Planck equation for anomalous diffusion in velocity space

被引:2
|
作者
Dubinova, A. A. [1 ]
Trigger, S. A. [2 ]
机构
[1] Russian Acad Sci, Inst Appl Phys, Nizhnii Novgorod 603950, Russia
[2] Russian Acad Sci, Joint Inst High Temp, Moscow 125412, Russia
关键词
Plasma; Anomalous diffusion; Master equation; Fokker-Planck equation; CHAPMAN-KOLMOGOROV EQUATION; SUPERDIFFUSION; WALKS;
D O I
10.1016/j.physleta.2012.04.048
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A more general quasi-Fokker-Planck equation is derived to describe particle kinetics in situations when the usual Fokker-Planck equation is not applicable. The equation is valid for an arbitrary value of the transferred in a collision act momentum and for the arbitrary mass ratio of the interacting particles. The only assumption is smallness of the typical velocity of the particles, undergoing diffusion. The developed approach is another tool to study anomalous diffusion, avoiding conventional in such problems fractional differentiation. In this Letter anomalous diffusion in velocity space is considered for hard-sphere, Coulomb and dusty plasma collision models. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:1930 / 1936
页数:7
相关论文
共 50 条
  • [1] Anomalous transport in velocity space: from Fokker-Planck to the general equation
    Trigger, S. A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (28)
  • [2] Anomalous diffusion: nonlinear fractional Fokker-Planck equation
    Tsallis, C
    Lenzi, EK
    CHEMICAL PHYSICS, 2002, 284 (1-2) : 341 - 347
  • [3] Anomalous diffusion and anisotropic nonlinear Fokker-Planck equation
    da Silva, PC
    da Silva, LR
    Lenzi, EK
    Mendes, RS
    Malacarne, LC
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 342 (1-2) : 16 - 21
  • [4] Dilatation symmetry of the Fokker-Planck equation and anomalous diffusion
    Abe, S
    PHYSICAL REVIEW E, 2004, 69 (01): : 4
  • [5] Levy anomalous diffusion and fractional Fokker-Planck equation
    Yanovsky, VV
    Chechkin, AV
    Schertzer, D
    Tur, AV
    PHYSICA A, 2000, 282 (1-2): : 13 - 34
  • [6] Anomalous heat diffusion from fractional Fokker-Planck equation
    Li, Shu-Nan
    Cao, Bing-Yang
    APPLIED MATHEMATICS LETTERS, 2020, 99 (99)
  • [7] Anomalous diffusion, nonlinear fractional Fokker-Planck equation and solutions
    Lenzi, EK
    Malacarne, LC
    Mendes, RS
    Pedron, IT
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2003, 319 : 245 - 252
  • [8] Anomalous diffusion: Fractional Fokker-Planck equation and its solutions
    Lenzi, EK
    Mendes, RS
    Fa, KS
    Malacarne, LC
    da Silva, LR
    JOURNAL OF MATHEMATICAL PHYSICS, 2003, 44 (05) : 2179 - 2185
  • [9] EFFECTIVE DIFFUSION IN THE FOKKER-PLANCK EQUATION
    KOZLOV, SM
    MATHEMATICAL NOTES, 1989, 45 (5-6) : 360 - 368
  • [10] Fokker-Planck equation in a wedge domain: Anomalous diffusion and survival probability
    Lenzi, E. K.
    Evangelista, L. R.
    Lenzi, M. K.
    da Silva, L. R.
    PHYSICAL REVIEW E, 2009, 80 (02):