On a construction of quadratic APN functions

被引:0
|
作者
Budaghyan, Lilya [1 ]
Carlet, Claude [2 ,3 ,4 ,5 ]
Leander, Gregor [6 ]
机构
[1] Univ Bergen, Dept Informat, PB 7803, N-5020 Bergen, Norway
[2] Univ Paris 08, F-93526 St Denis, France
[3] Univ Paris 13, F-93526 St Denis, France
[4] CNRS, LAGA, UMR 7539, St Denis, France
[5] Univ Paris 08, Dept Math, F-93526 St Denis, France
[6] Tech Univ Denmark, Dept Math, Lyngby, Denmark
来源
2009 IEEE INFORMATION THEORY WORKSHOP (ITW 2009) | 2009年
关键词
Almost bent; Almost perfect nonlinear; CCZ-equivalence; Nonlinearity; S-box; Vectorial Boolean function;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In a recent paper, the authors introduced a method for constructing new quadratic APN functions from known ones. Applying this method, they obtained the function x(3) + tr(n) (x(9)) which is APN over F-2n for any positive integer n. The present paper is a continuation of this work. We give sufficient conditions on linear functions L-1 and L-2 from F-2n to itself such that the function L-1(x(3)) + L-2(x(9)) is APN over F-2n. We show that this can lead to many new cases of APN functions. In particular, we get two families of APN functions x(3) + a(-1) tr(n)(3) (a(3)x(9) + a(6)x(18)) and x(3) + a(-1) tr(n)(3) (a(6)x(18) + a(12)x(36)) over F-2n for any n divisible by 3 and a is an element of F-2n*. We prove that for n = 9, these families are pairwise different and differ from all previously known families of APN functions, up to the most general equivalence notion, the CCZ-equivalence. We also investigate further sufficient conditions under which the conditions on the linear functions L-1 and L-2 are satisfied.
引用
收藏
页码:374 / 378
页数:5
相关论文
共 50 条
  • [21] ON THE FOURIER SPECTRA OF THE INFINITE FAMILIES OF QUADRATIC APN FUNCTIONS
    Bracken, Carl
    Zha, Zhengbang
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2009, 3 (03) : 219 - 226
  • [22] On equivalence between known families of quadratic APN functions
    Budaghyan, Lilya
    Calderini, Marco
    Villa, Irene
    FINITE FIELDS AND THEIR APPLICATIONS, 2020, 66
  • [23] On the Walsh spectrum of a family of quadratic APN functions with five terms
    QU LongJiang
    TAN Yin
    LI Chao
    ScienceChina(InformationSciences), 2014, 57 (02) : 271 - 277
  • [24] On the Walsh spectrum of a family of quadratic APN functions with five terms
    Qu LongJiang
    Tan Yin
    Li Chao
    SCIENCE CHINA-INFORMATION SCIENCES, 2014, 57 (02) : 1 - 7
  • [25] On the Walsh spectrum of a family of quadratic APN functions with five terms
    LongJiang Qu
    Yin Tan
    Chao Li
    Science China Information Sciences, 2014, 57 : 1 - 7
  • [26] Classification of quadratic APN functions with coefficients in F2 for dimensions up to 9
    Yu, Yuyin
    Kaleyski, Nikolay
    Budaghyan, Lilya
    Li, Yongqiang
    FINITE FIELDS AND THEIR APPLICATIONS, 2020, 68
  • [27] Open Questions on Nonlinearity and on APN Functions
    Carlet, Claude
    ARITHMETIC OF FINITE FIELDS (WAIFI 2014), 2015, 9061 : 83 - 107
  • [28] On Upper Bounds for Algebraic Degrees of APN Functions
    Budaghyan, Lilya
    Carlet, Claude
    Helleseth, Tor
    Li, Nian
    Sun, Bo
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (06) : 4399 - 4411
  • [29] Determining the nonlinearity of a new family of APN functions
    Bracken, Carl
    Byrne, Eimear
    Markin, Nadya
    McGuire, Gary
    APPLIED ALGEBRA, ALGEBRAIC ALGORITHMS AND ERROR-CORRECTING CODES, PROCEEDINGS, 2007, 4851 : 72 - 79