Development of ferroelectric oxides based resistive switching materials

被引:6
作者
Guan, Peiyuan [1 ]
Sun, Yuandong [2 ]
Wan, Tao [1 ]
Lin, Xi [1 ]
Xu, Zhemi [1 ]
Chu, Dewei [1 ]
机构
[1] Univ New South Wales, Sch Mat Sci & Engn, Sydney, NSW 2052, Australia
[2] Univ Akron, Dept Polymer Sci, Akron, OH 44325 USA
关键词
Resistive switching; ferroelectric oxide; non-volatile memory; SRZRO3; THIN-FILMS; SCHOTTKY JUNCTION; PHASE-CHANGE; MEMORY; MECHANISMS; CONDUCTION; ELECTRORESISTANCE; FILAMENTARY; TRANSITION; BEHAVIOR;
D O I
10.1080/02670836.2017.1366712
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Resistive random access memory (RRAM) is one of the most promising candidates that satisfies the requirements of new generation non-volatile memories, as a consequence of its high density, outstanding scalability, and low power consumption. The review is based on a summary of recent studies in ferroelectric oxides based resistive switching (RS) materials and devices. It highlights the various ferroelectric oxide materials with RS behaviour and the underlying mechanisms including filament-type and interface-type mechanism. In the end, the challenge in current RRAM for future high-density data storage applications is addressed.
引用
收藏
页码:2010 / 2023
页数:14
相关论文
共 147 条
[1]   Electric-pulse-induced reflectance change in the thin film of perovskite manganite [J].
Aoyama, K ;
Waku, K ;
Asanuma, A ;
Uesu, Y ;
Katsufuji, T .
APPLIED PHYSICS LETTERS, 2004, 85 (07) :1208-1210
[2]   Highly scalable non-volatile resistive memory using simple binary oxide driven by asymmetric unipolar voltage pulses [J].
Baek, IG ;
Lee, MS ;
Seo, S ;
Lee, MJ ;
Seo, DH ;
Suh, DS ;
Park, JC ;
Park, SO ;
Kim, HS ;
Yoo, IK ;
Chung, UI ;
Moon, JT .
IEEE INTERNATIONAL ELECTRON DEVICES MEETING 2004, TECHNICAL DIGEST, 2004, :587-590
[3]   Interface-type resistive switching in perovskite materials [J].
Bagdzevicius, S. ;
Maas, K. ;
Boudard, M. ;
Burriel, M. .
JOURNAL OF ELECTROCERAMICS, 2017, 39 (1-4) :157-184
[4]   Field-driven hysteretic and reversible resistive switch at the Ag-Pr0.7Ca0.3MnO3 interface [J].
Baikalov, A ;
Wang, YQ ;
Shen, B ;
Lorenz, B ;
Tsui, S ;
Sun, YY ;
Xue, YY ;
Chu, CW .
APPLIED PHYSICS LETTERS, 2003, 83 (05) :957-959
[5]   Reproducible switching effect in thin oxide films for memory applications [J].
Beck, A ;
Bednorz, JG ;
Gerber, C ;
Rossel, C ;
Widmer, D .
APPLIED PHYSICS LETTERS, 2000, 77 (01) :139-141
[6]   Metal oxide resistive memory switching mechanism based on conductive filament properties [J].
Bersuker, G. ;
Gilmer, D. C. ;
Veksler, D. ;
Kirsch, P. ;
Vandelli, L. ;
Padovani, A. ;
Larcher, L. ;
McKenna, K. ;
Shluger, A. ;
Iglesias, V. ;
Porti, M. ;
Nafria, M. .
JOURNAL OF APPLIED PHYSICS, 2011, 110 (12)
[7]   FERROELECTRIC SCHOTTKY DIODE [J].
BLOM, PWM ;
WOLF, RM ;
CILLESSEN, JFM ;
KRIJN, MPCM .
PHYSICAL REVIEW LETTERS, 1994, 73 (15) :2107-2110
[8]   Ferroelectric Polarization Effect on Al-Nb Codoped Pb(Zr0.52Ti0.48)O3/Pr0.7Ca0.3MnO3 Heterostructure Resistive Memory [J].
Bourim, El Mostafa ;
Park, Sangsoo ;
Liu, Xinjun ;
Biju, Kuyyadi P. ;
Hwang, Hyunsang ;
Ignatiev, Alex .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2011, 14 (05) :H225-H228
[9]   Engineering ferroelectric tunnel junctions through potential profile shaping [J].
Boyn, S. ;
Garcia, V. ;
Fusil, S. ;
Carretero, C. ;
Garcia, K. ;
Xavier, S. ;
Collin, S. ;
Deranlot, C. ;
Bibes, M. ;
Barthelemy, A. .
APL MATERIALS, 2015, 3 (06)
[10]   Electrochemical ferroelectric switching: Origin of polarization reversal in ultrathin films [J].
Bristowe, N. C. ;
Stengel, Massimiliano ;
Littlewood, P. B. ;
Pruneda, J. M. ;
Artacho, Emilio .
PHYSICAL REVIEW B, 2012, 85 (02)