Gevrey hypoellipticity of p-powers of non-hypoelliptic operators

被引:0
作者
De Donno, G [1 ]
机构
[1] Univ Turin, Dipartimento Matemat, I-10123 Turin, Italy
来源
ADVANCES IN PSEUDO-DIFFERENTIAL OPERATORS | 2004年 / 155卷
关键词
partial differential equations; hypoellipticity; Gevrey classes;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We characterize the hypoellipticity in C-infinity and Gevrey G(lambda) classes of 2-variable PDO's containing powers of anisotropic principal terms. We use an approach based on methods from microlocal analysis. Conditions are imposed on the coefficients of lower order terms. Also a semilinear version is proposed considering C-infinity nonlinear perturbations. See Theorem 1.1 and Theorem 1.6.
引用
收藏
页码:77 / 90
页数:14
相关论文
共 24 条
[1]  
Albanese AA, 2002, MATH NACHR, V242, P5, DOI 10.1002/1522-2616(200207)242:1<5::AID-MANA5>3.0.CO
[2]  
2-E
[3]   Fractional derivative estimates in Gevrey spaces, global regularity and decay for solutions to semilinear equations in Rn [J].
Biagioni, HA ;
Gramchev, T .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 194 (01) :140-165
[5]   Local solvability and hypoellipticity for semilinear anisotropic partial differential equations [J].
De Donno, G ;
Oliaro, A .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 355 (08) :3405-3432
[6]  
DEDONNO G, ANAL GEVREY SOLUTION
[7]  
DEDONNO G, 2000, REND SEM MAT U POL T, V58, P435
[8]  
DEDONNO G, 2000, CR ACAD BULG SCI, V53, P25
[9]  
DEDONNO G, HYPOELLIPTICITY LOCA
[10]  
Garello G, 1996, B UNIONE MAT ITAL, V10B, P885