Robust State of Charge estimation for Li-ion batteries based on Extended State Observers

被引:25
作者
Sandoval-Chileno, Marco A. [1 ]
Castaneda, Luis A. [2 ]
Luviano-Juarez, Alberto [1 ]
Gutierrez-Frias, Octavio [1 ]
Vazquez-Arenas, Jorge [2 ]
机构
[1] Inst Politecn Nacl UPIITA, Av IPN 2580 Col Barrio Laguna Ticoman, Ciudad De Mexico, Mexico
[2] Univ Autonoma Metropolitana Iztapalapa, Conacyt, Dept Quim, Av San Rafael Atlixco 186, Cdmx 09340, Mexico
关键词
Li-ion battery; State of Charge; LiNiMnCoO2; Extended State Observers; OF-CHARGE; DISTURBANCE REJECTION; MANAGEMENT-SYSTEMS; NEURAL-NETWORKS; MODEL; PACKS;
D O I
10.1016/j.est.2020.101718
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This article proposes a novel State of Charge estimation approach for Li-Ion batteries, using Extended State Observers of Generalized Proportional Integral type. The nonlinear relationship established between the Open Circuit Voltage and the nominal state of Charge is simulated via a set of interpolating polynomials, providing a more accurate description, meaningfully improving the classic piecewise linearization results, particularly at low state of charge conditions (0 to 0.1). The proposed method is experimentally tested in a 20 [Ah] LiNiMnCoO2 battery at different discharge C-rates and noise presence. Likewise, the estimator is compared against a sliding mode estimation scheme and an Extended Kalman Filter, showing competitive results as found by an integral error based performance index measurement with a reduction of up to 35%.
引用
收藏
页数:12
相关论文
共 58 条
[1]  
[Anonymous], 2002, NONLINEAR SYSTEMS
[2]  
ARM Inc, ARM2020 CMSIS DSP SO
[3]  
ARM Inc, ARM 2020 BAS DAT TYP
[4]   Real-life EV battery cycling on the test bench [J].
Bogel, W ;
Buchel, JP ;
Katz, H .
JOURNAL OF POWER SOURCES, 1998, 72 (01) :37-42
[5]   Disturbance attenuation using proportional integral observers [J].
Busawon, KK ;
Kabore, P .
INTERNATIONAL JOURNAL OF CONTROL, 2001, 74 (06) :618-627
[6]   State-of-Charge Estimation for Lithium-Ion Batteries Using Neural Networks and EKF [J].
Charkhgard, Mohammad ;
Farrokhi, Mohammad .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2010, 57 (12) :4178-4187
[7]   State-of-charge estimation of Li-ion batteries using deep neural networks: A machine learning approach [J].
Chemali, Ephrem ;
Kollmeyer, Phillip J. ;
Preindl, Matthias ;
Emadi, Ali .
JOURNAL OF POWER SOURCES, 2018, 400 :242-255
[8]   Long Short-Term Memory Networks for Accurate State-of-Charge Estimation of Li-ion Batteries [J].
Chemali, Ephrem ;
Kollmeyer, Phillip J. ;
Preindl, Matthias ;
Ahmed, Ryan ;
Emadi, Ali .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2018, 65 (08) :6730-6739
[9]  
Chen C.-T., 1998, LINEAR SYSTEM THEORY
[10]  
Chen Chi-Tsong., 1993, ANALOG DIGITAL CONTR