Defect-Induced Vibration Modes of Ar+-Irradiated MoS2

被引:72
作者
Bae, Soungmin [1 ]
Sugiyama, Natsuki [1 ]
Matsuo, Takatoshi [1 ]
Raebiger, Hannes [1 ]
Shudo, Ken-ichi [1 ,2 ]
Ohno, Koichi [3 ,4 ]
机构
[1] Yokohama Natl Univ, Dept Phys, Hodogaya Ku, Yokohama, Kanagawa 2408501, Japan
[2] Inst Phys & Chem Res RIKEN, Ctr Sustainable Resource Sci & Elements Chem Lab, Wako, Saitama 3510198, Japan
[3] IQCE, Minato Ku, Tokyo 1080022, Japan
[4] Tohoku Univ, Grad Sch Sci, Dept Chem, Aoba Ku, Sendai, Miyagi 9808578, Japan
关键词
RAMAN-SPECTROSCOPY; LAYER MOS2; GRAPHENE; PHONON; EXFOLIATION; MULTILAYER; MONOLAYER;
D O I
10.1103/PhysRevApplied.7.024001
中图分类号
O59 [应用物理学];
学科分类号
摘要
The Ar+-irradiated molybdenum-disulfide (MoS2) surface is studied by means of Raman spectroscopy and first-principles calculation. This experimental study reveals that Ar+ irradiation gives rise to satellite peaks at the lower-frequency side of the Raman-active E-2g(1) and A(1g) modes of MoS2 and a new peak at approximately 450 cm(-1). We calculate the phonon modes and Raman spectra of defective MoS2 systems from first principles, and show that Mo and S vacancies give rise to such satellite peaks. These satellite peaks are a modulation of the E-2g(1) and A(1g) modes, described in terms of localization and scattering of vibration modes. The new peak at 450 cm(-1), however, is a unique signature of the S vacancy. At low irradiation doses, the S vacancy is the dominant defect, whereas for large irradiation doses, the satellite peaks overshadow the MoS2 peaks, which we show to be typical for the Mo vacancy and MoS6 vacancy cluster. We thus show that Raman spectroscopy can be used not only to observe defects in two-dimensional materials, but also to identify the type of the defects.
引用
收藏
页数:7
相关论文
共 37 条
[1]   Honeycomb Carbon: A Review of Graphene [J].
Allen, Matthew J. ;
Tung, Vincent C. ;
Kaner, Richard B. .
CHEMICAL REVIEWS, 2010, 110 (01) :132-145
[2]   XPS investigation of preferential sputtering of S from MoS2 and determination of MoSx stoichiometry from Mo and S peak positions [J].
Baker, MA ;
Gilmore, R ;
Lenardi, C ;
Gissler, W .
APPLIED SURFACE SCIENCE, 1999, 150 (1-4) :255-262
[3]   D band Raman intensity calculation in armchair edged graphene nanoribbons [J].
Barros, E. B. ;
Sato, K. ;
Samsonidze, Ge. G. ;
Souza Filho, A. G. ;
Dresselhaus, M. S. ;
Saito, R. .
PHYSICAL REVIEW B, 2011, 83 (24)
[4]   Laser-Thinning of MoS2: On Demand Generation of a Single-Layer Semiconductor [J].
Castellanos-Gomez, A. ;
Barkelid, M. ;
Goossens, A. M. ;
Calado, V. E. ;
van der Zant, H. S. J. ;
Steele, G. A. .
NANO LETTERS, 2012, 12 (06) :3187-3192
[5]   In-situ Raman spectroscopy of current-carrying graphene microbridge [J].
Choi, Minkyung ;
Son, Jangyup ;
Choi, Heechae ;
Shin, Hyun-Joon ;
Lee, Sangho ;
Kim, Sanghoon ;
Lee, Soogil ;
Kim, Seungchul ;
Lee, Kwang-Ryeol ;
Kim, Sang Jin ;
Hong, Byung Hee ;
Hong, Jongill ;
Yang, In-Sang .
JOURNAL OF RAMAN SPECTROSCOPY, 2014, 45 (02) :168-172
[6]   Defect-mediated transport and electronic irradiation effect in individual domains of CVD-grown monolayer MoS2 [J].
Durand, Corentin ;
Zhang, Xiaoguang ;
Fowlkes, Jason ;
Najmaei, Sina ;
Lou, Jun ;
Li, An-Ping .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2015, 33 (02)
[7]   Photoluminescence from Chemically Exfoliated MoS2 [J].
Eda, Goki ;
Yamaguchi, Hisato ;
Voiry, Damien ;
Fujita, Takeshi ;
Chen, Mingwei ;
Chhowalla, Manish .
NANO LETTERS, 2011, 11 (12) :5111-5116
[8]   Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects [J].
Ferrari, Andrea C. .
SOLID STATE COMMUNICATIONS, 2007, 143 (1-2) :47-57
[9]   Raman and resonance Raman investigation of MoS2 nanoparticles [J].
Frey, GL ;
Tenne, R ;
Matthews, MJ ;
Dresselhaus, MS ;
Dresselhaus, G .
PHYSICAL REVIEW B, 1999, 60 (04) :2883-2892
[10]   Linear optical properties in the projector-augmented wave methodology -: art. no. 045112 [J].
Gajdos, M ;
Hummer, K ;
Kresse, G ;
Furthmüller, J ;
Bechstedt, F .
PHYSICAL REVIEW B, 2006, 73 (04)