Redundant sensor calibration monitoring using independent component analysis and principal component analysis

被引:10
作者
Ding, J [1 ]
Gribok, AV
Hines, JW
Rasmussen, B
机构
[1] Univ Tennessee, Dept Nucl Engn, Knoxville, TN 37996 USA
[2] Univ Tennessee, Dept Elect & Comp Engn, Knoxville, TN 37996 USA
关键词
independent component analysis; principal component analysis; sensor calibration; process monitoring; parameter estimation;
D O I
10.1023/B:TIME.0000019125.96107.ac
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper presents a comparison of methods for industrial on-line sensor calibration monitoring for redundant sensors. Principal component analysis (PCA) and independent component analysis (ICA) techniques are developed and compared using both simulated data and data sets from an operating nuclear power plant. The performance is dependent on the types of noise sources; however, under most conditions ICA outperforms PCA, based on the bias and variance of their respective parameter estimates. A case study is included to demonstrate the usefulness of both techniques for the early detection of sensor drift.
引用
收藏
页码:27 / 47
页数:21
相关论文
共 31 条
[1]   Plant monitoring and fault detection - Synergy between data reconciliation and principal component analysis [J].
Amand, T ;
Heyen, G ;
Kalitventzeff, B .
COMPUTERS & CHEMICAL ENGINEERING, 2001, 25 (4-6) :501-507
[2]  
[Anonymous], 1989, MULTIVARIATE CALIBRA
[3]  
CARDOSO JF, 1992, P EUSIPCO, P739
[4]  
CICHOCKI A, 2002, SIGNAL PROCESS, V36, P287
[5]   BLIND SEPARATION OF SOURCES .2. PROBLEMS STATEMENT [J].
COMON, P ;
JUTTEN, C ;
HERAULT, J .
SIGNAL PROCESSING, 1991, 24 (01) :11-20
[6]  
DAVIS E, 1998, TR104965 EPRI
[7]  
DAVIS E, 1995, WO378502 EPRI
[8]   A robust strategy for real-time process monitoring [J].
Doymaz, F ;
Chen, J ;
Romagnoli, JA ;
Palazoglu, A .
JOURNAL OF PROCESS CONTROL, 2001, 11 (04) :343-359
[9]   A strategy for detection and isolation of sensor failures and process upsets [J].
Doymaz, F ;
Romagnoli, JA ;
Palazoglu, A .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2001, 55 (1-2) :109-123
[10]   Identification of faulty sensors using principal component analysis [J].
Dunia, R ;
Qin, SJ ;
Edgar, TF ;
McAvoy, TJ .
AICHE JOURNAL, 1996, 42 (10) :2797-2812