Banach spaces adapted to Anosov systems

被引:179
作者
Gouëzel, S
Liverani, C
机构
[1] Univ Rennes 1, IRMAR, F-35042 Rennes, France
[2] II Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
关键词
D O I
10.1017/S0143385405000374
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the spectral properties of the Ruelle-Perron-Frobenius operator associated to an Anosov map on classes of functions with high smoothness. To this end we construct anisotropic Banach spaces of distributions on which the transfer operator has a small essential spectrum. In the C-infinity case, the essential spectral radius is arbitrarily small, which yields a description of the correlations with arbitrary precision. Moreover, we obtain sharp spectral stability results for deterministic and random perturbations. In particular, we obtain differentiability results for spectral data (which imply differentiability of the Sinai-Ruelle-Bowen measure, the variance for the central limit theorem, the rates of decay for smooth observable, etc.).
引用
收藏
页码:189 / 217
页数:29
相关论文
共 31 条
[1]  
ANOSOV D. V., 1967, RUSS MATH SURV, V22, p[107, 103], DOI 10.1070/RM1967v022n0
[2]  
Anosov D. V., 1967, T MAT I STEKLOV, V90
[3]   A DIRECT METHOD OF CONSTRUCTING AN INVARIANT MEASURE ON A HYPERBOLIC ATTRACTOR [J].
BAKHTIN, VI .
RUSSIAN ACADEMY OF SCIENCES IZVESTIYA MATHEMATICS, 1993, 41 (02) :207-227
[4]  
BALADI V, ANISOTROPIC SOBOLEV
[5]  
Baladi V., 2000, ADV SERIES NONLINEAR, V16
[6]  
BALADI V, ANISOTROPIC HOLDER S
[7]   Ruelle-Perron-Yrobenius spectrum for Anosov maps [J].
Blank, M ;
Keller, G ;
Liverani, C .
NONLINEARITY, 2002, 15 (06) :1905-1973
[8]  
Bowen R., 1975, LECT NOTES MATH, V470
[9]   On differentiability of SRB states for partially hyperbolic systems [J].
Dolgopyat, D .
INVENTIONES MATHEMATICAE, 2004, 155 (02) :389-449
[10]   MEROMORPHIC ZETA-FUNCTIONS FOR ANALYTIC FLOWS [J].
FRIED, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 174 (01) :161-190