Hopf bifurcation for maps: A frequency-domain approach

被引:23
作者
D'Amico, MB [1 ]
Moiola, JL
Paolini, EE
机构
[1] Univ Nacl Sur, Dept Ingn Elect, RA-8000 Bahia Blanca, Buenos Aires, Argentina
[2] Consejo Nacl Invest Cient & Tecn, RA-1033 Buenos Aires, DF, Argentina
关键词
bifurcation; discrete-time systems; frequency domain; harmonic analysis;
D O I
10.1109/81.989161
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The application of the graphical Hopf theorem (GHT) as a tool for detecting invariant cycles in maps is presented. The invariant cycle emerging from the bifurcation is approximated using an analogous version of the GHT for continuous-time systems. This technique is formulated in the so-called frequency domain and it involves the use of the Nyquist stability criterion and the harmonic balance method. Some examples are included for illustration.
引用
收藏
页码:281 / 288
页数:8
相关论文
共 19 条
[1]   HARMONIC BALANCE AND HOPF BIFURCATION [J].
ALLWRIGHT, DJ .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1977, 82 (NOV) :453-467
[2]   BIFURCATIONS FROM AN INVARIANT CIRCLE FOR 2-PARAMETER FAMILIES OF MAPS OF THE PLANE - A COMPUTER-ASSISTED STUDY [J].
ARONSON, DG ;
CHORY, MA ;
HALL, GR ;
MCGEHEE, RP .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 83 (03) :303-354
[3]  
AROUDI AE, 1999, IEEE T CIRCUITS SYST, V46, P1374
[4]   Double Hopf bifurcations and chaos of a nonlinear vibration system [J].
Bi, QS ;
Yu, P .
NONLINEAR DYNAMICS, 1999, 19 (04) :313-332
[5]   Study of bifurcations in current-programmed DC/DC boost converters: From quasi-periodicity to period-doubling [J].
Chan, WCY ;
Tse, CK .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1997, 44 (12) :1129-1142
[6]   A UNIVERSAL CIRCUIT FOR STUDYING AND GENERATING CHAOS .1. ROUTES TO CHAOS [J].
CHUA, LO ;
WU, CW ;
HUANG, AS ;
ZHONG, GQ .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 1993, 40 (10) :732-744
[7]  
D'Amico MB, 2000, CONTROL OF OSCILLATIONS AND CHAOS, VOLS 1-3, PROCEEDINGS, P290, DOI 10.1109/COC.2000.873974
[8]  
DAMICO MB, 2000, P WORKSH NONL DYN EL, P90
[9]   Instability, Subharmonics, and Chaos in Power Electronic Systems [J].
Deane, Jonathan H. B. ;
Hamill, David C. .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 1990, 5 (03) :260-268
[10]   RESONANCE PHENOMENA IN AN ADAPTIVELY-CONTROLLED SYSTEM [J].
Frouzakis, Christos E. ;
Adomaitis, Raymond A. ;
Kevrekidis, Ioannis G. .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1991, 1 (01) :83-106