Prediction of soluble solids content of jujube fruit using hyperspectral reflectance imaging

被引:6
|
作者
He, Jian Guo [1 ]
Luo, Yang [1 ]
Liu, Gui Shan [1 ]
Xu, Shuang [2 ]
Si, Zhen Hua [1 ]
He, Xiao Guang [1 ]
Wang, Song Lei [1 ]
机构
[1] Ningxia Univ, Sch Agr, Ningxia 750021, Peoples R China
[2] Ningxia Univ, Sch Phys & Elect Informat Engn, Ningxia 750021, Peoples R China
基金
中国国家自然科学基金;
关键词
'LingwuChangzao' jujube; Hyperspectral reflectance imaging; Soluble solids content; APPLE FRUIT; FIRMNESS;
D O I
10.4028/www.scientific.net/AMR.706-708.201
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
To predict soluble solids content (SSC) of jujube fruits, a hyperspectral imaging technique has been used for acquiring reflectance images from 200 samples in the spectral regions of 900-1700nm. Hyperspectral images of jujubes were evaluated from the regions of interest using principal component analysis (PCA) with the goal of selecting five optimal wavelengths (1034, 1109, 1231, 1291 and 1461nm). Prediction model of SSC (Rp=0.9027, RMSEP=1.9845) were built based on BP neural network. This research has demonstrated the feasibility of implementing hyperspectral imaging technique for sorting jujube fruit for SSC to enhance the product quality and marketability.
引用
收藏
页码:201 / +
页数:2
相关论文
共 50 条
  • [41] Hyperspectral imaging-based detection of soluble solids content of loquat from a small sample
    Li, Siyi
    Song, Qiming
    Liu, Yongjie
    Zeng, Taiheng
    Liu, Shiyang
    Jie, Dengfei
    Wei, Xuan
    POSTHARVEST BIOLOGY AND TECHNOLOGY, 2023, 204
  • [42] Determination of soluble solids content in tomatoes with different nitrogen levels based on hyperspectral imaging technique
    Zhang, Yiyang
    Zhang, Yao
    Tian, Yu
    Ma, Hua
    Tian, Xingwu
    Zhu, Yanzhe
    Huang, Yanfa
    Cao, Yune
    Wu, Longguo
    JOURNAL OF FOOD SCIENCE, 2024, 89 (09) : 5724 - 5733
  • [43] Soluble solids content monitoring for shelf-life assessment of table grapes coated with chitosan using hyperspectral imaging
    Shao, Yuanyuan
    Wang, Kaili
    Xuan, Guantao
    Gao, Chong
    Hu, Zhichao
    INFRARED PHYSICS & TECHNOLOGY, 2021, 115
  • [44] Nondestructive measurement of soluble solids content in apple using near infrared hyperspectral imaging coupled with wavelength selection algorithm
    Zhang, Dongyan
    Xu, Yunfei
    Huang, Wenqian
    Tian, Xi
    Xia, Yu
    Xu, Lu
    Fan, Shuxiang
    INFRARED PHYSICS & TECHNOLOGY, 2019, 98 : 297 - 304
  • [45] Calibration Transfer from Micro NIR Spectrometer to Hyperspectral Imaging: a Case Study on Predicting Soluble Solids Content of Bananito Fruit (Musa acuminata)
    Yuan-Yuan Pu
    Da-Wen Sun
    Cecilia Riccioli
    Marina Buccheri
    Maurizio Grassi
    Tiziana M. P. Cattaneo
    Aoife Gowen
    Food Analytical Methods, 2018, 11 : 1021 - 1033
  • [46] Calibration Transfer from Micro NIR Spectrometer to Hyperspectral Imaging: a Case Study on Predicting Soluble Solids Content of Bananito Fruit (Musa acuminata)
    Pu, Yuan-Yuan
    Sun, Da-Wen
    Riccioli, Cecilia
    Buccheri, Marina
    Grassi, Maurizio
    Cattaneo, Tiziana M. P.
    Gowen, Aoife
    FOOD ANALYTICAL METHODS, 2018, 11 (04) : 1021 - 1033
  • [47] Detection of the protein content of Ningxia Tan sheep using hyperspectral reflectance imaging
    Wang, Songlei
    Liu, Guishan
    Li, Xuefu
    Luo, Ruiming
    APPLIED SCIENCE, MATERIALS SCIENCE AND INFORMATION TECHNOLOGIES IN INDUSTRY, 2014, 513-517 : 4235 - 4238
  • [48] Detection of mango soluble solid content using hyperspectral imaging technology
    Tian, Pan
    Meng, Qinghua
    Wu, Zhefeng
    Lin, Jiaojiao
    Huang, Xin
    Zhu, Hui
    Zhou, Xulin
    Qiu, Zouquan
    Huang, Yuqing
    Li, Yu
    INFRARED PHYSICS & TECHNOLOGY, 2023, 129
  • [49] Prediction of Soluble Solids Content in Green Plum by Using a Sparse Autoencoder
    Shen, Luxiang
    Wang, Honghong
    Liu, Ying
    Liu, Yang
    Zhang, Xiao
    Fei, Yeqi
    APPLIED SCIENCES-BASEL, 2020, 10 (11):
  • [50] Pears characteristics (soluble solids content and firmness prediction, varieties) testing methods based on visible-near infrared hyperspectral imaging
    Li, Baicheng
    Hou, Baolu
    Zhang, Dawei
    Zhou, Yao
    Zhao, Mantong
    Hong, Ruijin
    Huang, Yuanshen
    OPTIK, 2016, 127 (05): : 2624 - 2630