On the lp spectrum of Laplacians on graphs

被引:19
作者
Bauer, Frank [1 ,2 ]
Hua, Bobo [2 ]
Keller, Matthias [3 ]
机构
[1] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
[2] Max Planck Inst Math Nat Wissensch, D-04103 Leipzig, Germany
[3] Hebrew Univ Jerusalem, Einstein Inst Math, IL-91904 Jerusalem, Israel
基金
以色列科学基金会; 欧洲研究理事会;
关键词
l(p)-spectrum; Discrete Laplace operator; Regular Dirichlet forms; Cheeger constant; Planar tessellation; L-P-INDEPENDENCE; INFINITE-GRAPHS; HEAT KERNELS; BOUNDS; CURVATURE; DIRICHLET; OPERATORS; FORMULA;
D O I
10.1016/j.aim.2013.05.029
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the p-independence of spectra of Laplace operators on graphs arising from regular Dirichlet forms on discrete spaces. Here, a sufficient criterion is given solely by a uniform subexponential growth condition. Moreover, under a mild assumption on the measure we show a one-sided spectral inclusion without any further assumptions. We study applications to normalized Laplacians including symmetries of the spectrum and a characterization for positivity of the Cheeger constant. Furthermore, we consider Laplacians on planar tessellations for which we relate the spectral p-independence to assumptions on the curvature. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:717 / 735
页数:19
相关论文
共 46 条
[1]  
[Anonymous], LINEAR OPERATORS THE
[2]  
[Anonymous], 2011, THESIS BIELEFELD U
[3]  
Arendt W., 1994, Differ. Integral Equ., V7, P1153
[4]   Curvature and geometry of tessellating plane graphs [J].
Baues, O ;
Peyerimhoff, N .
DISCRETE & COMPUTATIONAL GEOMETRY, 2001, 25 (01) :141-159
[5]   Geodesics in non-positively curved plane tessellations [J].
Baues, O ;
Peyerimhoff, N .
ADVANCES IN GEOMETRY, 2006, 6 (02) :243-263
[6]   Gauss-Bonnet formula, finiteness condition, and characterizations of graphs embedded in surfaces [J].
Chen, Beifang ;
Chen, Guantao .
GRAPHS AND COMBINATORICS, 2008, 24 (03) :159-183
[7]   LP-independence of spectral bounds of generalized non-local Feynman-Kac semigroups [J].
Chen, Zhen-Qing .
JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 262 (09) :4120-4139
[8]  
Davies E.B., 1989, HEAT KERNELS SPECTRA, V92
[9]   L(P) SPECTRAL INDEPENDENCE AND L(1) ANALYTICITY [J].
DAVIES, EB .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1995, 52 :177-184
[10]   THE FUNCTIONAL-CALCULUS [J].
DAVIES, EB .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1995, 52 :166-176