Paired bondage in trees

被引:13
|
作者
Raczek, Joanna [1 ]
机构
[1] Gdansk Univ Technol, Dept Appl Math & Phys, PL-80952 Gdansk, Poland
关键词
Paired domination number; Bondage number; Trees;
D O I
10.1016/j.disc.2007.10.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G = (V, E) be a graph with delta(G) >= 1. A set D subset of V is a paired dominating set if D is dominating, and the induced subgraph < D > contains a perfect matching. The paired domination number of G, denoted by gamma(p)(G), is the minimum cardinality of a paired dominating set of G. The paired bondage number, denoted by b(p)(G), is the minimum cardinality among all sets of edges E' subset of E such that delta(G - E') >= 1 and gamma(p)(G - E') > gamma(p)(G). We say that G is a gamma(p)-strongly stable graph if, for all E' subset of E, either gamma(p)(G - E') = gamma(p)(G) or delta(G - E') = 0. We discuss the basic properties of paired bondage and give a constructive characterization of gamma(p)-strongly stable trees. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:5570 / 5575
页数:6
相关论文
共 50 条
  • [31] Efficient bondage number of a graph
    Kulli, VR
    Soner, ND
    NATIONAL ACADEMY SCIENCE LETTERS-INDIA, 1996, 19 (9-10): : 197 - 202
  • [32] Bondage number of grid graphs
    Dettlaff, Magda
    Lemanska, Magdalena
    Yero, Ismael G.
    DISCRETE APPLIED MATHEMATICS, 2014, 167 : 94 - 99
  • [33] Bondage Numbers of Mycielski Graphs
    Fu-Tao Hu
    Moo Young Sohn
    Jaeun Lee
    Bulletin of the Malaysian Mathematical Sciences Society, 2016, 39 : 229 - 245
  • [34] On the bondage number of middle graphs
    A. Aytaç
    T. Turaci
    Z. N. Odabaş
    Mathematical Notes, 2013, 93 : 795 - 801
  • [35] Bondage number in oriented graphs
    Shan, Erfang
    Kang, Liying
    ARS COMBINATORIA, 2007, 84 : 319 - 331
  • [36] ON THE AVERAGE LOWER BONDAGE NUMBER OF A GRAPH
    Turaci, Tufan
    RAIRO-OPERATIONS RESEARCH, 2016, 50 (4-5) : 1003 - 1012
  • [37] Upper bounds on the bondage number of a graph
    Samodivkin, Vladimir
    ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2018, 6 (01) : 1 - 16
  • [38] A BOUND ON THE BONDAGE NUMBER OF TOROIDAL GRAPHS*
    Hou, Jianfeng
    Liu, Guizhen
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2012, 4 (03)
  • [39] ROMAN {2}-BONDAGE NUMBER OF A GRAPH
    Moradi, Ahmad
    Mojdeh, Doost Ali
    Sharifi, Omid
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2020, 40 (01) : 255 - 268
  • [40] Remarks on the bondage number of planar graphs
    Fischermann, M
    Rautenbach, D
    Volkmann, L
    DISCRETE MATHEMATICS, 2003, 260 (1-3) : 57 - 67