Modified diffusion equation for the wormlike-chain statistics in curvilinear coordinates

被引:30
作者
Liang, Qin [1 ,2 ,3 ]
Li, Jianfeng [4 ]
Zhang, Pingwen [2 ,3 ]
Chen, Jeff Z. Y. [5 ]
机构
[1] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Hunan, Peoples R China
[2] Peking Univ, LMAM, Beijing 100871, Peoples R China
[3] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
[4] Fudan Univ, Dept Macromol Sci, State Key Lab Mol Engn Polymers, Shanghai 200433, Peoples R China
[5] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada
基金
美国国家科学基金会;
关键词
D O I
10.1063/1.4811515
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
One of the essential physical quantities used to study the conformation and structure of polymers is the so-called propagator in polymer theories. On the basis of the wormlike-chain statistical-physics model, we derive the partial diffusion equation that the propagator satisfies, for a curvilinear coordinate system. As it turns out, an additional term exists, that couples the rotating local coordinate frame with an orientation differential operator; this term has not been previously documented. In addition, for a wormlike chain moving on a curved surface, the external-field term needs to be supplemented by a surface curvature energy penalty. (C) 2013 AIP Publishing LLC.
引用
收藏
页数:5
相关论文
共 22 条
[1]   Structural transitions of encapsidated polyelectrolytes [J].
Angelescu, D. G. ;
Linse, P. ;
Nguyen, T. T. ;
Bruinsma, R. F. .
EUROPEAN PHYSICAL JOURNAL E, 2008, 25 (03) :323-334
[2]  
Arfken G. B., 2005, Mathematical Methods for Physi- cists, V6th
[3]   Simulation of Semiflexible Cyclic and Linear Chains Moderately and Strongly Confined in Nanochannels [J].
Benkova, Zuzana ;
Cifra, Peter .
MACROMOLECULES, 2012, 45 (05) :2597-2608
[4]   Fluctuations of a long, semiflexible polymer in a narrow channel [J].
Burkhardt, Theodore W. ;
Yang, Yingzi ;
Gompper, Gerhard .
PHYSICAL REVIEW E, 2010, 82 (04)
[5]  
Doi M., 1988, THEORY POLYM DYNAMIC
[6]  
Fredrickson G. H., 2006, International Series of Monographs on Physics, V134
[7]  
Freed K. F, 1972, ADV CHEM PHYS, V22, P1, DOI [10.1002/9780470143728, DOI 10.1002/9780470143728.CH1, DOI 10.1002/9780470143728]
[8]  
Grosberg A. Y., 1994, Statistical Physics of Macromolecules
[9]   Conformational behavior of polymers adsorbed on nanotubes [J].
Gurevitch, Inna ;
Srebnik, Simcha .
JOURNAL OF CHEMICAL PHYSICS, 2008, 128 (14)
[10]   A CONSTANT RADIUS OF CURVATURE MODEL FOR THE ORGANIZATION OF DNA IN TOROIDAL CONDENSATES [J].
HUD, NV ;
DOWNING, KH ;
BALHORN, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (08) :3581-3585