The longest ultraconserved sequences and evolution of vertebrate mitochondrial genomes

被引:0
作者
Fang, WW [1 ]
Tu, SL
Cai, X
Wang, YC
Wu, WX
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100080, Peoples R China
[2] Shandong Agr Univ, Tai An 271018, Peoples R China
[3] Univ Int Business & Econ, Beijing 100029, Peoples R China
来源
CHINESE SCIENCE BULLETIN | 2006年 / 51卷 / 05期
基金
中国国家自然科学基金;
关键词
mitochondrial genome; ultraconserved sequence; small RNA; evolution;
D O I
10.1007/s11434-006-0552-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We compared 753 genomes of bacteria, archaea, and mitochondria (more than 540 M data) and found four unique ultraconserved sequences in 352 vertebrate mitochondrial genomes which are the longest or second longest or third longest ultraconserved subsequences in the vertebrate mitochondrial genomes, their lengths are approximate to those of small RNA. Surprisingly, the classification and evolution relationship among some high-level categories of animals can be clearly reflected by their regularity of occurrence; moreover, these findings gave rise to some new ideas of evolution of mitochondria and living beings. For instance, the variations in mitochondrial genomes of animals may help clarify the evolution relationship between Aves and Reptile, and understand the fact that the origin of mitochondrion is at least not a simple copy of genomes of lower living things such as bacteria and archaea.
引用
收藏
页码:552 / 556
页数:5
相关论文
共 10 条
[1]   Ultraconserved elements in the human genome [J].
Bejerano, G ;
Pheasant, M ;
Makunin, I ;
Stephen, S ;
Kent, WJ ;
Mattick, JS ;
Haussler, D .
SCIENCE, 2004, 304 (5675) :1321-1325
[2]  
Darwin Charles, 1991, ORIGIN SPECIES
[3]   THE COMPUTATION OF CONSENSUS PATTERNS IN DNA-SEQUENCES [J].
DAY, WHE ;
MCMORRIS, FR .
MATHEMATICAL AND COMPUTER MODELLING, 1993, 17 (10) :49-52
[4]   Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans [J].
Fire, A ;
Xu, SQ ;
Montgomery, MK ;
Kostas, SA ;
Driver, SE ;
Mello, CC .
NATURE, 1998, 391 (6669) :806-811
[5]  
Florence W, 2000, NAT CELL BIOL, V2, P70
[6]   Evolutionarily conserved sequences on human chromosome 21 [J].
Frazer, KA ;
Sheehan, JB ;
Stokowski, RP ;
Chen, XY ;
Hosseini, R ;
Cheng, JF ;
Fodor, SPA ;
Cox, DR ;
Patil, N .
GENOME RESEARCH, 2001, 11 (10) :1651-1659
[7]  
Goldschmidt R, 1940, MAT BASIS EVOLUTION
[8]   LINEAR SPACE ALGORITHM FOR COMPUTING MAXIMAL COMMON SUBSEQUENCES [J].
HIRSCHBERG, DS .
COMMUNICATIONS OF THE ACM, 1975, 18 (06) :341-343
[9]   EVOLUTIONARY RATE AT MOLECULAR LEVEL [J].
KIMURA, M .
NATURE, 1968, 217 (5129) :624-&
[10]   Combinatorial pattern discovery in biological sequences: the TEIRESIAS algorithm [J].
Rigoutsos, I ;
Floratos, A .
BIOINFORMATICS, 1998, 14 (01) :55-67