Thermal and Manufacturing Design Considerations for Silicon-Based Embedded Microchannel-Three-Dimensional Manifold Coolers-Part 2: Parametric Study of EMMCs for High Heat Flux (∼1kW/cm2) Power Electronics Cooling

被引:10
作者
Jung, Ki Wook [1 ]
Hazra, Sougata [1 ]
Kwon, Heungdong [1 ]
Piazza, Alisha [1 ]
Jih, Edward [2 ]
Asheghi, Mehdi [1 ]
Gupta, Man Prakash [2 ]
Degner, Michael [2 ]
Goodson, Kenneth E. [1 ]
机构
[1] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA
[2] Ford Motor Co, Dearborn, MI 48124 USA
基金
美国国家科学基金会;
关键词
embedded microchannels; 3D-manifold; computational fluid dynamics (CFD); single-phase water; OPTIMIZATION; SINK; PERFORMANCE; WATER;
D O I
10.1115/1.4047883
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Thermal management of power electronics modules is one of the limiting factors in the peak power capability of the traction inverter system and overall efficiency of the e-drive. Liquid cooling using embedded microchannels with a three-dimensional (3D)-manifold cooler (EMMC) is a promising technology capable of removingheat fluxes of >1kW/cm(2) at tens of kPa pressure drop. In this work, we utilize computational fluid dynamics (CFD) simulations to conduct a parametric study of selected EMMC designs to improve the thermofluidic performance for a 5mmx5mm heated area with the applied heat flux of 800W/cm(2) using single-phase water as working fluid at inlet temperature of 25 degrees C. We implemented strategies such as: (i) symmetric distribution of manifold inlet/outlet conduits, (ii) reducing the thickness of cold-plate (CP) substrate, and (iii) increasing fluid-solid interfacial area in CP microchannels, which resulted in a reduction in thermal resistance from 0.1 for baseline design to 0.04cm(2) K/W, while the pressure drop increased from 8 to 37kPa.
引用
收藏
页数:11
相关论文
共 21 条
[1]   Heat transfer and pressure drop characteristics of a flat plate manifold microchannel heat exchanger in counter flow configuration [J].
Andhare, Rohit S. ;
Shooshtari, Amir ;
Dessiatoun, Serguei V. ;
Ohadi, Michael M. .
APPLIED THERMAL ENGINEERING, 2016, 96 :178-189
[2]  
[Anonymous], 2010, THESIS
[3]   Numerical modeling and thermal optimization of a single-phase flow manifold-microchannel plate heat exchanger [J].
Arie, M. A. ;
Shooshtari, A. H. ;
Dessiatoun, S. V. ;
Al-Hajri, E. ;
Ohadi, M. M. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2015, 81 :478-489
[4]   Combined Numerical Optimization and Constructal Theory for the Design of Microchannel Heat Sinks [J].
Bello-Ochende, T. ;
Meyer, J. P. ;
Ighalo, F. U. .
NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 2010, 58 (11) :882-899
[5]  
Bergman T.L., 2011, INTRO HEAT TRANSFER, DOI DOI 10.1016/J.APPLTHERMALENG.2011.03.022
[6]  
Brunschwiler T., 2009, Proc. 3DIC 2009, P1
[7]  
Cengel Y. A., 2013, FLUID MECH
[8]   Characterization of hierarchical manifold microchannel heat sink arrays under simultaneous background and hotspot heating conditions [J].
Drummond, Kevin P. ;
Back, Doosan ;
Sinanis, Michael D. ;
Janes, David B. ;
Peroulis, Dimitrios ;
Weibel, Justin A. ;
Garimella, Suresh V. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2018, 126 :1289-1301
[9]  
Drummond KP, 2016, INTERSOC C THERMAL T, P307, DOI 10.1109/ITHERM.2016.7517565
[10]  
Hazra S., 2020, ASME J ELECT PACKAG, DOI [10.1115/1.4047847, DOI 10.1115/1.4047847]