Random Bosonic States for Robust Quantum Metrology

被引:71
作者
Oszmaniec, M. [1 ]
Augusiak, R. [1 ,2 ]
Gogolin, C. [1 ,3 ]
Kolodynski, J. [1 ]
Acin, A. [1 ,4 ]
Lewenstein, M. [1 ,4 ]
机构
[1] Barcelona Inst Sci & Technol, ICFO Inst Ciencies Foton, Castelldefels 08860, Barcelona, Spain
[2] Polish Acad Sci, Ctr Theoret Phys, Al Lotnikow 32-46, PL-02668 Warsaw, Poland
[3] Max Planck Inst Quantum Opt, Hans Kopfermann Str 1, D-85748 Garching, Germany
[4] ICREA Inst Catalana Recerca & Estudis Avancats, Lluis Companys 23, Barcelona 08010, Spain
来源
PHYSICAL REVIEW X | 2016年 / 6卷 / 04期
基金
欧洲研究理事会;
关键词
AVERAGE ENTROPY; NONLINEAR OPTICS; ENTANGLEMENT; PHOTON; LIMIT;
D O I
10.1103/PhysRevX.6.041044
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study how useful random states are for quantum metrology, i.e., whether they surpass the classical limits imposed on precision in the canonical phase sensing scenario. First, we prove that random pure states drawn from the Hilbert space of distinguishable particles typically do not lead to superclassical scaling of precision even when allowing for local unitary optimization. Conversely, we show that random pure states from the symmetric subspace typically achieve the optimal Heisenberg scaling without the need for local unitary optimization. Surprisingly, the Heisenberg scaling is observed for random isospectral states of arbitrarily low purity and preserved under loss of a fixed number of particles. Moreover, we prove that for pure states, a standard photon-counting interferometric measurement suffices to typically achieve resolution following the Heisenberg scaling for all values of the phase at the same time. Finally, we demonstrate that metrologically useful states can be prepared with short random optical circuits generated from three types of beam splitters and a single nonlinear (Kerr-like) transformation.
引用
收藏
页数:34
相关论文
共 50 条
  • [1] Robust quantum metrology with random Majorana constellations
    Goldberg, Aaron Z.
    Hervas, Jose R.
    Sanz, Angel S.
    Klimov, Andrei B.
    Rehacek, Jaroslav
    Hradil, Zdenek
    Hiekkamaki, Markus
    Eriksson, Matias
    Fickler, Robert
    Leuchs, Gerd
    Sanchez-Soto, Luis L.
    QUANTUM SCIENCE AND TECHNOLOGY, 2025, 10 (01):
  • [2] Two-mode bosonic quantum metrology with number fluctuations
    De Pasquale, Antonella
    Facchi, Paolo
    Florio, Giuseppe
    Giovannetti, Vittorio
    Matsuoka, Koji
    Yuasa, Kazuya
    PHYSICAL REVIEW A, 2015, 92 (04):
  • [3] Quantum-Enhanced Metrology with Network States
    Yang, Yuxiang
    Yadin, Benjamin
    Xu, Zhen-Peng
    PHYSICAL REVIEW LETTERS, 2024, 132 (21)
  • [4] Realization of Versatile and Effective Quantum Metrology Using a Single Bosonic Mode
    Pan, Xiaozhou
    Krisnanda, Tanjung
    Duina, Andrea
    Park, Kimin
    Song, Pengtao
    Fontaine, Clara Yun
    Copetudo, Adrian
    Filip, Radim
    Gao, Yvonne Y.
    PRX QUANTUM, 2025, 6 (01):
  • [5] Quantum metrology with spin cat states under dissipation
    Huang, Jiahao
    Qin, Xizhou
    Zhong, Honghua
    Ke, Yongguan
    Lee, Chaohong
    SCIENTIFIC REPORTS, 2015, 5
  • [6] Quantum metrology with imperfect states and detectors
    Datta, Animesh
    Zhang, Lijian
    Thomas-Peter, Nicholas
    Dorner, Uwe
    Smith, Brian J.
    Walmsley, Ian A.
    PHYSICAL REVIEW A, 2011, 83 (06):
  • [7] Quantum metrology with Dicke squeezed states
    Zhang, Z.
    Duan, L. M.
    NEW JOURNAL OF PHYSICS, 2014, 16
  • [8] Quantum metrology with generalized cat states
    Tatsuta, Mamiko
    Matsuzaki, Yuichiro
    Shimizu, Akira
    PHYSICAL REVIEW A, 2019, 100 (03)
  • [9] Matrix Product States for Quantum Metrology
    Jarzyna, Marcin
    Demkowicz-Dobrzanski, Rafal
    PHYSICAL REVIEW LETTERS, 2013, 110 (24)
  • [10] Quantum metrology with one-dimensional superradiant photonic states
    Paulisch, V
    Perarnau-Llobet, M.
    Gonzalez-Tudela, A.
    Cirac, J., I
    PHYSICAL REVIEW A, 2019, 99 (04)