Marginal deformations of heterotic G2 sigma models

被引:11
作者
Fiset, Marc-Antoine [1 ]
Quigley, Callum [2 ]
Svanes, Eirik Eik [3 ,4 ,5 ,6 ]
机构
[1] Univ Oxford, Math Inst, Woodstock Rd, Oxford OX2 6GG, England
[2] Univ Toronto, Dept Phys, 60 St George St, Toronto, ON M5S 1A7, Canada
[3] Kings Coll London, Dept Phys, London WC2R 2LS, England
[4] Abdus Salam Int Ctr Theoret Phys, 11 Str Costiera, I-34151 Trieste, Italy
[5] UPMC Paris 6, Sorbonne Univ, CNRS, Lab Phys Theor & Hautes Energies, 4 Pl Jussieu, F-75005 Paris, France
[6] Inst Lagrange Paris, 98 Blvd Arago, F-75014 Paris, France
基金
加拿大自然科学与工程研究理事会;
关键词
Conformal Field Models in String Theory; Superspaces; BRST Quantization; Differential and Algebraic Geometry; MANIFOLDS; G(2)-INSTANTONS; COHOMOLOGY; GEOMETRY; SPINORS; MODULI;
D O I
10.1007/JHEP02(2018)052
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Recently, the infinitesimal moduli space of heterotic G(2) compactifications was described in supergravity and related to the cohomology of a target space differential. In this paper we identify the marginal deformations of the corresponding heterotic nonlinear sigma model with cohomology classes of a worldsheet BRST operator. This BRST operator is nilpotent if and only if the target space geometry satisfies the heterotic supersymmetry conditions. We relate this to the supergravity approach by showing that the corresponding cohomologies are indeed isomorphic. We work at tree-level in alpha' perturbation theory and study general geometries, in particular with non-vanishing torsion.
引用
收藏
页数:20
相关论文
共 68 条
[1]   On mirror symmetry for manifolds of exceptional holonomy [J].
Acharya, BS .
NUCLEAR PHYSICS B, 1998, 524 (1-2) :269-282
[2]   Dirichlet Joyce manifolds, discrete torsion and duality [J].
Acharya, BS .
NUCLEAR PHYSICS B, 1997, 492 (03) :591-606
[3]  
Adams A, 2006, ADV THEOR MATH PHYS, V10, P657
[4]   Algebroids, heterotic moduli spaces and the Strominger system [J].
Anderson, Lara B. ;
Gray, James ;
Sharpe, Eric .
JOURNAL OF HIGH ENERGY PHYSICS, 2014, (07)
[5]   Stabilizing all geometric moduli in heterotic Calabi-Yau vacua [J].
Anderson, Lara B. ;
Gray, James ;
Lukas, Andre ;
Ovrut, Burt .
PHYSICAL REVIEW D, 2011, 83 (10)
[6]   Stabilizing the complex structure in heterotic Calabi-Yau vacua [J].
Anderson, Lara B. ;
Gray, James ;
Lukas, Andre ;
Ovrut, Burt .
JOURNAL OF HIGH ENERGY PHYSICS, 2011, (02)
[7]  
Atiyah M.F., 1957, Trans. Amer. Math. Soc., V85, P181
[8]  
Beasley C., 2006, JHEP, V02
[9]   The α' expansion on a compact manifold of exceptional holonomy [J].
Becker, Katrin ;
Robbins, Daniel ;
Witten, Edward .
JOURNAL OF HIGH ENERGY PHYSICS, 2014, (06) :1-35
[10]   Moduli space of torsional manifolds [J].
Becker, Melanie ;
Tseng, Li-Sheng ;
Yau, Shing-Tung .
NUCLEAR PHYSICS B, 2007, 786 (1-2) :119-134