Green's function method for the two-dimensional frustrated spin-1/2 Heisenberg magnetic lattice

被引:0
作者
Zhao, Zhen [1 ]
Verdozzi, Claudio
Aryasetiawan, Ferdi
机构
[1] Lund Univ, Div Math Phys, POB 118, S-22100 Lund, Sweden
基金
瑞典研究理事会;
关键词
SQUARE-LATTICE; FUNCTION FORMALISM; PHASE-DIAGRAM; GROUND-STATE; ANTIFERROMAGNET; FERROMAGNETISM; SYSTEMS; LIQUID;
D O I
10.1103/PhysRevB.106.184417
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The magnon Hedin's equations are derived via the Schwinger functional derivative technique, and the resulting self-consistent Green's function (GF) method is used to calculate ground state spin patterns and magnetic structure factors for two-dimensional magnetic systems with frustrated spin-1/2 Heisenberg exchange coupling. Compared with random phase approximation treatments, the inclusion of a self-energy correction improves the accuracy in the case of scalar product interactions, as shown by comparisons between our method and exact benchmarks in homogeneous and inhomogeneous finite systems. We also find that, for cross-product interactions (e.g., antisymmetric exchange), the method does not perform equally well, and an inclusion of higher corrections is in order. Aside from indications for future work, our results clearly indicate that the GF method in the form proposed here already shows potential advantages in the description of systems with a large number of atoms as well as long-range interactions.
引用
收藏
页数:10
相关论文
共 55 条
[11]   A THERMODYNAMIC THEORY OF WEAK FERROMAGNETISM OF ANTIFERROMAGNETICS [J].
DZYALOSHINSKY, I .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 1958, 4 (04) :241-255
[12]   Determination of effective microscopic models for the frustrated antiferromagnets Cs2CuCl4 and Cs2CuBr4 by density functional methods [J].
Foyevtsova, Kateryna ;
Opahle, Ingo ;
Zhang, Yu-Zhong ;
Jeschke, Harald O. ;
Valenti, Roser .
PHYSICAL REVIEW B, 2011, 83 (12)
[13]   Topological transitions among skyrmion- and hedgehog-lattice states in cubic chiral magnets [J].
Fujishiro, Y. ;
Kanazawa, N. ;
Nakajima, T. ;
Yu, X. Z. ;
Ohishi, K. ;
Kawamura, Y. ;
Kakurai, K. ;
Arima, T. ;
Mitamura, H. ;
Miyake, A. ;
Akiba, K. ;
Tokunaga, M. ;
Matsuo, A. ;
Kindo, K. ;
Koretsune, T. ;
Arita, R. ;
Tokura, Y. .
NATURE COMMUNICATIONS, 2019, 10 (1)
[14]   A model for individual quantal nano-skyrmions [J].
Gauyacq, J. P. ;
Lorente, N. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2019, 31 (32)
[15]   SPIN ANISOTROPY OF FERROMAGNETIC-FILMS [J].
GAY, JG ;
RICHTER, R .
PHYSICAL REVIEW LETTERS, 1986, 56 (25) :2728-2731
[16]   Quantum Heisenberg model with long-range ferromagnetic interactions: A Green's function approach [J].
Hamedoun, M ;
Cherriet, Y ;
Hourmatallah, A ;
Benzakour, N .
PHYSICAL REVIEW B, 2001, 63 (17)
[17]   Signatures of Dirac Cones in a DMRG Study of the Kagome Heisenberg Model [J].
He, Yin-Chen ;
Zaletel, Michael P. ;
Oshikawa, Masaki ;
Pollmann, Frank .
PHYSICAL REVIEW X, 2017, 7 (03)
[18]   First-principles determination of Heisenberg Hamiltonian parameters for the spin-1/2 kagome antiferromagnet ZnCu3(OH)6Cl2 [J].
Jeschke, Harald O. ;
Salvat-Pujol, Francesc ;
Valenti, Roser .
PHYSICAL REVIEW B, 2013, 88 (07)
[19]   Supersolid order of frustrated hard-core bosons in a triangular lattice system [J].
Jiang, H. C. ;
Weng, M. Q. ;
Weng, Z. Y. ;
Sheng, D. N. ;
Balents, L. .
PHYSICAL REVIEW B, 2009, 79 (02)
[20]   Density matrix renormalization group numerical study of the kagome antiferromagnet [J].
Jiang, H. C. ;
Weng, Z. Y. ;
Sheng, D. N. .
PHYSICAL REVIEW LETTERS, 2008, 101 (11)