Oscillation results for a dynamic equation on a time scale

被引:20
作者
Akin, E
Erbe, L
Peterson, A [1 ]
Kaymakçalan, B
机构
[1] Univ Nebraska, Dept Math & Stat, Lincoln, NE 68588 USA
[2] Georgia So Univ, Dept Math & Comp Sci, Statesboro, GA 30460 USA
关键词
measure chains; time scales; oscillation;
D O I
10.1080/10236190108808303
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
First we are concerned with properties of an exponential function for a dynamic equation on a time scale. We completely determine the sign of this exponential function. This then determines when first order linear homogeneous dynamic equations and their adjoints are oscillatory or nonoscillatory. In the last section of this paper we give oscillation criterion for a certain higher order linear dynamic equation on a time scale.
引用
收藏
页码:793 / 810
页数:18
相关论文
共 16 条
  • [1] Agarwal R. P., 1999, RESULTS MATH, V35, P3, DOI [DOI 10.1007/BF03322019, 10.1007/BF03322019]
  • [2] Quadratic functionals for second order matrix equations on time scales
    Agarwal, RP
    Bohner, M
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1998, 33 (07) : 675 - 692
  • [3] Sturm-Liouville eigenvalue problems on time scales
    Agarwal, RP
    Bohner, M
    Wong, PJY
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 1999, 99 (2-3) : 153 - 166
  • [4] [Anonymous], DIFFER EQU DYN SYST
  • [5] BOHNER M, UNPUB LINEAR DIFFERE
  • [6] BOHNER M, IN PRESS J DIFFER EQ
  • [7] Positive solutions for a nonlinear differential equation on a measure chain
    Erbe, L
    Peterson, A
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 2000, 32 (5-6) : 571 - 585
  • [8] Erbe L, 1999, DYN CONTIN DISCRET I, V6, P121
  • [9] Gy??ri I., 1991, OSCILLATION THEORY D
  • [10] HARTMAN P, 1978, T AM MATH SOC, V246, P1